Development of Highly Crystalline Donor–Acceptor-Type Random Polymers for High Performance Large-Area Organic Solar Cells

2017 ◽  
Vol 50 (19) ◽  
pp. 7567-7576 ◽  
Author(s):  
Jae Hoon Yun ◽  
Hyungju Ahn ◽  
Phillip Lee ◽  
Min Jae Ko ◽  
Hae Jung Son
2018 ◽  
Vol 9 (1) ◽  
pp. 1802832 ◽  
Author(s):  
Sheng Dong ◽  
Kai Zhang ◽  
Boming Xie ◽  
Jingyang Xiao ◽  
Hin-Lap Yip ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2020 ◽  
Vol 63 (7) ◽  
pp. 957-965 ◽  
Author(s):  
Yiming Bai ◽  
Chunyan Zhao ◽  
Shuai Zhang ◽  
Shaoqing Zhang ◽  
Runnan Yu ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 484-489
Author(s):  
Minghui You ◽  
Jiayin Song ◽  
Zhaoxin Wang ◽  
Bei Wang ◽  
Jingsheng Liu

There was inefficient light absorption in the thin active layers due to optical losses in Organic Solar Cells (OSCs) with relatively large area. Therefore, it is a key issue to have a light trapping structure for highly efficient OSCs. For high performance devices fabrication, a smart grating was fabricated using holographic photolithography incorporated with wet etching technology. Scanning electron microscopy (SEM) images of fabrication were employed before/after spin-coating active layer. With the aid of optical finite difference time Domain (FDTD) simulation for optical effect, the optimized device structure ITO (1D grating)/PEDOT:PSS (40 nm)/PBDB-T:ITIC (100 nm)/PDINO (5 nm)/Al (100 nm) was obtained. The experimental results showed that when the grating period was 350 nm, depth 40 nm, the power conversion efficiencies (PCE) reached to 9.51%, an apparent increase from those of the typical P3HT:PC71BM structure. This work indicates that the diffraction gratings had a potential to realize more efficient organic photovoltaics, if suitable fabrication processing methods can be developed.


2020 ◽  
Vol 8 (18) ◽  
pp. 6293-6298
Author(s):  
Cancan Jiao ◽  
Ziqi Guo ◽  
Binqiao Sun ◽  
Yuan-qiu-qiang Yi ◽  
Lingxian Meng ◽  
...  

An acceptor molecule with an asymmetric backbone, CC10, has been designed, which achieved a power conversion efficiency of 11.78%.


2020 ◽  
Vol 4 (12) ◽  
pp. 3487-3504 ◽  
Author(s):  
Jiajun Zhao ◽  
Chao Yao ◽  
Muhammad Umair Ali ◽  
Jingsheng Miao ◽  
Hong Meng

In this review, we focus on the recent advances in organic solar cells enabled by A–DA′D–A type acceptors and summarize the correlation between molecular structure, molecular packings, optoelectronic properties, and photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document