scholarly journals Gas Barrier Polymer Nanocomposite Films Prepared by Graphene Oxide Encapsulated Polystyrene Microparticles

2020 ◽  
Vol 2 (2) ◽  
pp. 725-731 ◽  
Author(s):  
Steven M. J. Merritt ◽  
Alan M. Wemyss ◽  
Stefano Farris ◽  
Samson Patole ◽  
Georgios Patias ◽  
...  
2020 ◽  
Vol 2 (10) ◽  
pp. 4702-4712
Author(s):  
Namrata Maslekar ◽  
Rabiatul A. Mat Noor ◽  
Rhiannon P. Kuchel ◽  
Yin Yao ◽  
Per B. Zetterlund ◽  
...  

The study focussed on synthesis of colloidally stable diamine functionalised graphene oxide (GO) with dangling free amine groups, and exhibited physicochemical and electrical properties of these functionalised sheets in a polymer-based nanocomposite.


2017 ◽  
Vol 4 (9) ◽  
pp. 1808-1816 ◽  
Author(s):  
Jingjing Fan ◽  
Carlos David Grande ◽  
Debora F. Rodrigues

The polymer present in the nanocomposite is degraded by microorganisms present in the wastewater.


2015 ◽  
Vol 15 (10) ◽  
pp. 8348-8352 ◽  
Author(s):  
Min Eui Lee ◽  
Hyoung-Joon Jin

Poly(vinyl alcohol) (PVA) composites containing graphene oxide (GO) functionalized with PVA were synthesized via the esterification of the carboxylic groups of GO. The presence of PVA-grafted GO (PVA-g-GO) in the PVA matrix induced strong interactions between the chains of the PVA matrix and allowed the PVA-g-GO to be uniformly dispersed throughout the matrix. The grafting of PVA to GO increased the gas barrier properties of the GO/PVA composites because of the increased compatibility between GO and PVA. The PVA-g-GO/PVA composites were used to coat the surface of poly(ethylene terephthalate) films. These coated films exhibited excellent gas barrier properties; the film containing 0.3 wt% of PVA-g-GO had an oxygen transmission rate (OTR) of 0.025 cc/(m2 · day) and an optical transmittance of 83.8%. As a result, PVA-g-GO/PVA composites that exhibited enhanced gas barrier properties were prepared with a solution mixing method.


2021 ◽  
Vol 33 (7) ◽  
pp. 1513-1518
Author(s):  
Sanoop Padinhattayil ◽  
K. Sheshappa Rai

Present study describes the analogy and comparative study of polymer nanocomposites with the known polymer matrix hydroxypropyl methylcellulose (HPMC) incorporated with graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as nano fillers. The polymer nanocomposite films were carried out using solution casting method and characterized by IR spectroscopy, XRD analysis, mechanical properties, thermal characterization and optical microscopy analysis. There were several changes in the HPMC polymer by the addition of nanoparticles of GO and ZnO in structural, thermal, mechanical and optical properties. The thermal stability of the composite films increased as compared with the pure HPMC whereas the mechanical study shows a variation of down values.


2017 ◽  
Vol 1 (6) ◽  
pp. 1229-1244 ◽  
Author(s):  
Sourav Biswas ◽  
Yudhajit Bhattacharjee ◽  
Sujit Sankar Panja ◽  
Suryasarathi Bose

The fabrication of thin multilayer polymer nanocomposite films and their judicious arrangement in a sandwich structure to attenuate incoming electromagnetic (EM) radiation, mostly by absorption, is discussed herein.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2938
Author(s):  
Giulia Fredi ◽  
Mahdi Karimi Jafari ◽  
Andrea Dorigato ◽  
Dimitrios N. Bikiaris ◽  
Riccardo Checchetto ◽  
...  

This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.


Sign in / Sign up

Export Citation Format

Share Document