scholarly journals Environmental Performance in the Production and Use of Recovered Fertilizers from Organic Wastes Treated by Anaerobic Digestion vs Synthetic Mineral Fertilizers

Author(s):  
Axel Herrera ◽  
Giuliana D’Imporzano ◽  
Massimo Zilio ◽  
Ambrogio Pigoli ◽  
Bruno Rizzi ◽  
...  
2017 ◽  
Vol 34 (04) ◽  
pp. 349-362 ◽  
Author(s):  
Stefan Josef Hörtenhuber ◽  
Michaela Clarissa Theurl ◽  
Kurt Möller

AbstractEfficient phosphorus (P) recycling from rural and urban areas is becoming an increasing issue due to the scarcity of natural P deposits. Based on a life cycle assessment (LCA), we analyzed the environmental performance of 17 different P supply and recycling approaches from urban wastes, biosolids and slaughterhouse wastes compared with the two conventional inorganic fertilizers phosphate rock and triple superphosphate. The results show that many recycled P fertilizers (RPFs; e.g., digestates from urban organic wastes, biosolids and their ashes, meat and bone meal (MBM) and its recycling products) are competitive in terms of LCA results compared with conventional P fertilizers. For each of the P recycling sources, one or more treatment options were identified, which have more favorable LCA results than the conventional references. For sewage sludge, we found that direct application of the stabilized biosolids, and incineration with application of the ash showed the lowest LCA impacts per kg P; their treatments even generated net credits from added values. The same applies for the anaerobic digestion treatment of urban organic wastes. For MBM, low environmental impacts were identified for each of the analyzed treatment options, especially for anaerobic digestion, incineration, feeding with application of manure and direct application. Similarly, low environmental impacts and net credits were found for directly applied biomass ash. Some organically based RPFs demonstrate added values, i.e., as nitrogen and potassium fertilizer effect, energy gains during the treatment, or a humus sequestration potential. If these added values are considered in the LCAs, 11 out of 17 RPFs will have advantageous effects for the majority of addressed impact categories.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


2015 ◽  
Vol 2 (4) ◽  
pp. 136-144 ◽  
Author(s):  
Jessica L. Linville ◽  
Yanwen Shen ◽  
May M. Wu ◽  
Meltem Urgun-Demirtas

2013 ◽  
Vol 69 (7) ◽  
pp. III_605-III_614
Author(s):  
Taira HIDAKA ◽  
Feng WANG ◽  
Tsutomu UCHIDA ◽  
Yutaka SUZUKI

2021 ◽  
Vol 3 ◽  
Author(s):  
Eudald Casals ◽  
Raquel Barrena ◽  
Edgar Gonzalez ◽  
Xavier Font ◽  
Antoni Sánchez ◽  
...  

The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.


Author(s):  
A. El-Bassel ◽  
H. Gamal-El-Din ◽  
I. M. Ghazi ◽  
O. Soodi

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


Sign in / Sign up

Export Citation Format

Share Document