scholarly journals Escherichia coliClass Ib Ribonucleotide Reductase Contains a Dimanganese(III)-Tyrosyl Radical Cofactor in Vivo

Biochemistry ◽  
2011 ◽  
Vol 50 (10) ◽  
pp. 1672-1681 ◽  
Author(s):  
Joseph A. Cotruvo ◽  
JoAnne Stubbe
Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1930-1936 ◽  
Author(s):  
CR Chitambar ◽  
WG Matthaeus ◽  
WE Antholine ◽  
K Graff ◽  
WJ O'Brien

Abstract Cellular requirements for iron during DNA synthesis are related to the increased activity of the iron-containing M2 subunit of ribonucleotide reductase, the enzyme responsible for the reduction of ribonucleotides to deoxyribonucleotides. We have previously shown that transferrin- gallium (Tf-Ga) inhibits cellular iron incorporation. In the present study, Tf-Ga-induced inhibition of HL60 cell growth and upregulation of Tf receptor density was reversed with hemin. Cells exposed to 2 mumol/L Tf-Ga for six hours or longer displayed a diminution in the electron spin resonance (ESR) spectroscopy signal of the tyrosyl radical of the M2 subunit of ribonucleotide reductase. The effect of Tf-Ga on the ESR signal was reversed by hemin. Tf-Ga decreased the incorporation of 14C- adenosine into DNA and decreased intracellular deoxyribonucleotide pools, with the maximum diminution seen in deoxyadenosine triphosphate (dATP) and deoxycytidine triphosphate (dCTP) pools. Exposure of cells to combinations of Tf-Ga and hydroxyurea (a known inhibitor of ribonucleotide reductase) resulted in a marked inhibition of cell growth that was consistent with drug synergy. Our studies suggest that Tf-Ga inhibits DNA synthesis through action on the M2 subunit of ribonucleotide reductase and that combinations of Ga and hydroxyurea should be further evaluated in in vivo tumor models.


2003 ◽  
Vol 185 (4) ◽  
pp. 1167-1173 ◽  
Author(s):  
Monica Ekberg ◽  
Pernilla Birgander ◽  
Britt-Marie Sjöberg

ABSTRACT Ribonucleotide reductase (RNR) catalyzes the essential production of deoxyribonucleotides in all living cells. In this study we have established a sensitive in vivo assay to study the activity of RNR in aerobic Escherichia coli cells. The method is based on the complementation of a chromosomally encoded nonfunctional RNR with plasmid-encoded RNR. This assay can be used to determine in vivo activity of RNR mutants with activities beyond the detection limits of traditional in vitro assays. E. coli RNR is composed of two homodimeric proteins, R1 and R2. The R2 protein contains a stable tyrosyl radical essential for the catalysis that takes place at the R1 active site. The three-dimensional structures of both proteins, phylogenetic studies, and site-directed mutagenesis experiments show that the radical is transferred from the R2 protein to the active site in the R1 protein via a radical transfer pathway composed of at least nine conserved amino acid residues. Using the new assay we determined the in vivo activity of mutants affecting the radical transfer pathway in RNR and identified some residual radical transfer activity in two mutant R2 constructs (D237N and W48Y) that had previously been classified as negative for enzyme activity. In addition, we show that the R2 mutant Y356W is completely inactive, in sharp contrast to what has previously been observed for the corresponding mutation in the mouse R2 enzyme.


2008 ◽  
Vol 190 (14) ◽  
pp. 4849-4858 ◽  
Author(s):  
Ignasi Roca ◽  
Eduard Torrents ◽  
Margareta Sahlin ◽  
Isidre Gibert ◽  
Britt-Marie Sjöberg

ABSTRACT The Streptococcus pyogenes genome harbors two clusters of class Ib ribonucleotide reductase genes, nrdHEF and nrdF*I*E*, and a second stand-alone nrdI gene, designated nrdI2. We show that both clusters are expressed simultaneously as two independent operons. The NrdEF enzyme is functionally active in vitro, while the NrdE*F* enzyme is not. The NrdF* protein lacks three of the six highly conserved iron-liganding side chains and cannot form a dinuclear iron site or a tyrosyl radical. In vivo, on the other hand, both operons are functional in heterologous complementation in Escherichia coli. The nrdF*I*E* operon requires the presence of the nrdI* gene, and the nrdHEF operon gained activity upon cotranscription of the heterologous nrdI gene from Streptococcus pneumoniae, while neither nrdI* nor nrdI2 from S. pyogenes rendered it active. Our results highlight the essential role of the flavodoxin NrdI protein in vivo, and we suggest that it is needed to reduce met-NrdF, thereby enabling the spontaneous reformation of the tyrosyl radical. The NrdI* flavodoxin may play a more direct role in ribonucleotide reduction by the NrdF*I*E* system. We discuss the possibility that the nrdF*I*E* operon has been horizontally transferred to S. pyogenes from Mycoplasma spp.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1930-1936
Author(s):  
CR Chitambar ◽  
WG Matthaeus ◽  
WE Antholine ◽  
K Graff ◽  
WJ O'Brien

Cellular requirements for iron during DNA synthesis are related to the increased activity of the iron-containing M2 subunit of ribonucleotide reductase, the enzyme responsible for the reduction of ribonucleotides to deoxyribonucleotides. We have previously shown that transferrin- gallium (Tf-Ga) inhibits cellular iron incorporation. In the present study, Tf-Ga-induced inhibition of HL60 cell growth and upregulation of Tf receptor density was reversed with hemin. Cells exposed to 2 mumol/L Tf-Ga for six hours or longer displayed a diminution in the electron spin resonance (ESR) spectroscopy signal of the tyrosyl radical of the M2 subunit of ribonucleotide reductase. The effect of Tf-Ga on the ESR signal was reversed by hemin. Tf-Ga decreased the incorporation of 14C- adenosine into DNA and decreased intracellular deoxyribonucleotide pools, with the maximum diminution seen in deoxyadenosine triphosphate (dATP) and deoxycytidine triphosphate (dCTP) pools. Exposure of cells to combinations of Tf-Ga and hydroxyurea (a known inhibitor of ribonucleotide reductase) resulted in a marked inhibition of cell growth that was consistent with drug synergy. Our studies suggest that Tf-Ga inhibits DNA synthesis through action on the M2 subunit of ribonucleotide reductase and that combinations of Ga and hydroxyurea should be further evaluated in in vivo tumor models.


2013 ◽  
Vol 288 (20) ◽  
pp. 13951-13959 ◽  
Author(s):  
Yan Zhang ◽  
Xiuxiang An ◽  
JoAnne Stubbe ◽  
Mingxia Huang

The small subunit (β2) of class Ia ribonucleotide reductase (RNR) houses a diferric tyrosyl cofactor (Fe2III-Y•) that initiates nucleotide reduction in the large subunit (α2) via a long range radical transfer (RT) pathway in the holo-(α2)m(β2)n complex. The C-terminal tails of β2 are predominantly responsible for interaction with α2, with a conserved tyrosine residue in the tail (Tyr356 in Escherichia coli NrdB) proposed to participate in cofactor assembly/maintenance and in RT. In the absence of structure of any holo-RNR, the role of the β tail in cluster assembly/maintenance and its predisposition within the holo-complex have remained unknown. In this study, we have taken advantage of the unusual heterodimeric nature of the Saccharomyces cerevisiae RNR small subunit (ββ′), of which only β contains a cofactor, to address both of these issues. We demonstrate that neither β-Tyr376 nor β′-Tyr323 (Tyr356 equivalent in NrdB) is required for cofactor assembly in vivo, in contrast to the previously proposed mechanism for E. coli cofactor maintenance and assembly in vitro. Furthermore, studies with reconstituted-ββ′ and an in vivo viability assay show that β-Tyr376 is essential for RT, whereas Tyr323 in β′ is not. Although the C-terminal tail of β′ is dispensable for cofactor formation and RT, it is essential for interactions with β and α to form the active holo-RNR. Together the results provide the first evidence of a directed orientation of the β and β′ C-terminal tails relative to α within the holoenzyme consistent with a docking model of the two subunits and argue against RT across the β β′ interface.


Sign in / Sign up

Export Citation Format

Share Document