Reactive Transport Modeling of Column Experiments for the Remediation of Acid Mine Drainage

2004 ◽  
Vol 38 (11) ◽  
pp. 3131-3138 ◽  
Author(s):  
Richard T. Amos ◽  
K. Ulrich Mayer ◽  
David W. Blowes ◽  
Carol J. Ptacek
2010 ◽  
Vol 213 (1-4) ◽  
pp. 437-458 ◽  
Author(s):  
Mariam Ouangrawa ◽  
Michel Aubertin ◽  
John W. Molson ◽  
Bruno Bussière ◽  
Gérald J. Zagury

2019 ◽  
Vol 268 ◽  
pp. 06003 ◽  
Author(s):  
Carlito Tabelin ◽  
Asuka Sasaki ◽  
Toshifumi Igarashi ◽  
Shingo Tomiyama ◽  
Mylah Villacorte-Tabelin ◽  
...  

Acid mine drainage (AMD), the very acidic and highly contaminated leachate generated in closed/abandoned mines, is commonly managed by neutralization to raise the pH and precipitate most of the heavy metals. Although effective, this approach does not generate any product of economic value, so it is very costly and unsustainable in the long-term. Unfortunately, there are currently no effective alternatives to neutralization, and one way to improve the sustainability of this process is to reduce the volume of AMD generated and/or the concentration of heavy metals. The tailings dam investigated in this study is located in northern Hokkaido, Japan. Detailed characterization of borehole core samples showed that even after almost 40 years of exposure to the environment, the tailings still contain pyrite (FeS2) and substantial amounts of copper (Cu) and zinc (Zn). Reactive-transport modeling using Visual MODFLOW predicted that AMD quality would likely continue to deteriorate with time and that treatment should be continued for at least 1,000 years. The model also predicted that a barrier with low permeability installed downstream of the tailings dam or ground sealing techniques for recharge reduction could lower the volume of AMD and concentration of Zn from the site.


2007 ◽  
Vol 20-21 ◽  
pp. 291-294
Author(s):  
Roger B. Herbert ◽  
Linda Höckert ◽  
Mattias von Brömssen ◽  
Helen Friis ◽  
Gunnar Jacks

Column experiments investigated the stabilization of waste rock from Ljusnarsberg mine in Kopparberg, Sweden. In order to inhibit the generation of acidic leachate from the waste rock, biosludge and a Ca carbonate – rich residue from the paper industry were mixed with the sulfidic mine waste. The results of the column experiments indicate that the stabilization of the waste rock with the reactive amendments succeeded in maintaining a near – neutral pH in the waste rock leachate, compared to a pH 3 leachate from untreated waste rock. Copper and Zn concentrations in leachate from the untreated waste exceeded 100 mg/L, while these metals were detected at concentrations less than 0.1 and 1 mg/L, respectively, in the leachate from the treated wastes. This study indicates that the stabilization of acid – generating waste rock with biosludge and Ca carbonate residues is effective in preventing the generation of acid mine drainage; the treatment is expected to continue until the reactive amendments are exhausted.


Sign in / Sign up

Export Citation Format

Share Document