Reply to “Comments on ‘Joule−Thomson Inversion Curves and Third Virial Coefficients for Pure Fluids from Molecular-Based Models’ and ‘Predicted Inversion Curve and Third Virial Coefficients of Carbon Dioxide at High Temperatures’”

2009 ◽  
Vol 48 (14) ◽  
pp. 6904-6905
Author(s):  
Coray M. Colina ◽  
Claudio Olivera-Fuentes

During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


This paper describes the first part of an investigation of the thermodynamic properties of gases and gaseous mixtures undertaken a few years ago at the National Physical Laboratory, with the main object of providing data on the relationship between the properties of mixtures and those of the pure constituents. The virial coefficients of carbon dioxide and ethylene have been determined by the series-expansion method over the range —10 to 200 °C, and the representation of the results by several forms of intermolecular potential has been investigated. In the case of ethylene it appears that the second virial coefficient may be represented accurately in terms of a Lennard-Jones 6:12 potential, the parameters of which are determined. In the corresponding representation for carbon dioxide there is a small but systematic discrepancy and evidence is adduced that this may be rectified by the introduction of a quadrupole interaction term on the lines of the theory developed by Pople. The value of the quadrupole moment suggested by this calculation proves to be in fairly close agreement with a recent direct determination. Work on the virial coefficients of mixtures of the two gases will be described in a further paper.


2021 ◽  
Author(s):  
Tomoki Kujirai ◽  
Akira Yamaguchi ◽  
Takeshi Fujita ◽  
Hideki Abe ◽  
Masahiro Miyauchi

Steam reforming of methane (SRM) requires high temperatures to be promoted, and the production of carbon dioxide from the side reaction has also become a problem. In this study, we...


Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


Nature ◽  
1974 ◽  
Vol 247 (5435) ◽  
pp. 67-67
Author(s):  
K. A. SOUZA ◽  
L. P. ZILL

Sign in / Sign up

Export Citation Format

Share Document