Chlorine kinetic isotope effects in nucleophilic substitution reactions. Support for the ion pairs mechanism in the reactions of p-methoxybenzyl chloride in 70% aqueous acetone

1974 ◽  
Vol 96 (10) ◽  
pp. 3255-3261 ◽  
Author(s):  
Donald G. Graczyk ◽  
James W. Taylor
1979 ◽  
Vol 57 (11) ◽  
pp. 1354-1367 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

The nucleophilic substitution reactions of a series of 4-substituted phenylbenzyldimethyl-ammonium ions with thiophenoxide ions at 0 °C in N,N-dimethylformamide have been used to demonstrate how a change in the leaving group alters the structure of the SN2 transition state. Heavy atom (nitrogen) kinetic isotope effects, secondary α-deuterium kinetic isotope effects and Hammett ρ values provide qualitative descriptions of both the nucleophile–α-carbon and α-carbon–leaving group bonds in the transition states of these reactions. The results indicate that changing to a better leaving group causes the bond between the α-carbon and the nucleophile to be much more fully formed while the bond to the leaving group is essentially unchanged. The results are discussed in the light of current theories of substituent effects on SN2 reactions and a possible explanation for the surprising results (i) that the greatest effect is in the bond more remote from the point of structural change and (ii) that more nucleophilic assistance is required to displace a better leaving group is given.


1982 ◽  
Vol 60 (19) ◽  
pp. 2500-2520 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Zbigniew Waszczylo

Kinetic studies, secondary α-deuterium kinetic isotope effects, primary chlorine kinetic isotope effects (1), Hammett ρ values determined by changing the substituent in the nucleophile, and activation parameters have been used to determine the detailed (relative) structures of the transition states for the SN2 reactions between para-substituted benzyl chlorides and thiophenoxide ion. A rationale for the U-shaped Hammett ρ plots observed when para-substituted benzyl compounds react with negatively charged nucleophiles is also presented.


1979 ◽  
Vol 57 (9) ◽  
pp. 1089-1097 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

A very large secondary α-deuterium kinetic isotope effect of 1.179 ± 0.007 (1.086 ± 0.003 per α-deuterium) has been observed for the SN2 reaction of thiophenoxide ion with benzyldimethylphenylammonium ion in DMF at 0°C. This large isotope effect which is far outside the range reported for SN2 reactions, is attributed to the fact that the extraordinarily large steric crowding around the Cα—H bonds in the substrate is reduced in the SN2 transition state. The structure of the transition state is shown to be consistent with this hypothesis.


2017 ◽  
Vol 70 (1) ◽  
pp. 101 ◽  
Author(s):  
Hasi Rani Barai

The kinetics of the nucleophilic substitution reactions of bis(N,N-diethylamino)phosphinic chloride with substituted anilines (XC6H4NH2) and deuterated anilines (XC6H4ND2) are investigated in MeCN at 65.0°C. The deuterium kinetic isotope effects (DKIEs) are secondary inverse (kH/kD < 1: 0.706–0.947) and the magnitudes of the secondary inverse DKIEs (kH/kD) increase constantly as the nucleophiles are changed from weakly basic to strongly basic anilines. The magnitudes of the selectivity parameters are ρX(H) = –6.34, and βX(H) = 2.24 with substituted anilines and ρX(D) = –6.13 and βX(D) = 2.17 with deuterated anilines. A concerted SN2 mechanism involving predominant backside attack is proposed based on the kH/kD values with substituent X.


1989 ◽  
Vol 67 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Zhu-Gen Lai ◽  
Kenneth Charles Westaway

The secondary α-deuterium kinetic isotope effects and substituent effect found in the SN2 reactions between a series of para-substituted sodium thiophenoxides and benzyldimethylphenylammonium ion are significantly larger when the reacting nucleophile is a free ion than when it is a solvent-separated ion pair complex. Tighter transition states are found when a poorer nucleophile is used in both the free ion and ion pair reactions. Also, the transition states for all but one substituent are tighter for the reactions with the solvent-separated ion pair complex than with the free ion. Hammett ρ values found by changing the substituent on the nucleophile do not appear to be useful for determining the length of the sulphur–α-carbon bond in the ion pair and free ion transition states. Keywords: Isotope effects, ion pairing, nucleophilic substitution, SN2 reactions, transition states.


1975 ◽  
Vol 53 (21) ◽  
pp. 3216-3226 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Raymond Alcide Poirier

A kinetic study of the nucleophilic substitution reactions of a series of para-substituted phenylbenzyldimethylammonium nitrates with sodium thiophenoxide at 0 °C in N,N-dimethylformamide containing a large excess of sodium nitrate, has shown the reaction to be a second-order process which is first-order in both the substrate and the nucleophile. A Hammett ρ value of +2.04 for different para-substitutents on the N-phenyl group of the quaternary ammonium salt and a large nitrogen kinetic isotope effect of 1.0200 ± 0.0007 have excluded any mechanism involving a carbonium ion intermediate but are in accord with an SN2 mechanism with a substantial amount of carbon–nitrogen bond rupture in the transition state.


1986 ◽  
Vol 64 (6) ◽  
pp. 1206-1214 ◽  
Author(s):  
Helen Alma Joly ◽  
Kenneth Charles Westaway

Secondary α and β hydrogen–deuterium kinetic isotope effects have been used together to show that the SN reaction between 1-phenylethyldimethylphenylammonium ion and bromide or iodide ion in chloroform occurs by way of an SN2 mechanism within a triple ion in spite of the fact that it reacts faster than the primary substrate, benzyldimethylphenylammonium bromide. The very loose transition state and steric effects in the ground state appear to be responsible for the unusually fast SN2 reactions between 1-phenylethyldimethylphenylammonium ion and halide ions in chloroform.


Sign in / Sign up

Export Citation Format

Share Document