Site-Specific Fluorescent Labeling of RNA Molecules by Specific Transcription Using Unnatural Base Pairs

2005 ◽  
Vol 127 (49) ◽  
pp. 17286-17295 ◽  
Author(s):  
Rie Kawai ◽  
Michiko Kimoto ◽  
Shuji Ikeda ◽  
Tsuneo Mitsui ◽  
Masayuki Endo ◽  
...  
2005 ◽  
Vol 33 (15) ◽  
pp. e129-e129 ◽  
Author(s):  
K. Moriyama ◽  
M. Kimoto ◽  
T. Mitsui ◽  
S. Yokoyama ◽  
I. Hirao

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Michiko Kimoto ◽  
Rie Yamashige ◽  
Shigeyuki Yokoyama ◽  
Ichiro Hirao

For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification andDsand pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modifiedPabases into RNA by T7 transcription. To prepareDs-containing DNA templates with long chains, theDs-Pxpair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containingDsat specific positions. Using theseDs-containing DNA templates and a biotin-linkedPasubstrate (Biotin-PaTP) as a modifiedPabase, 260-mer RNA transcripts containing Biotin-Paat a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining theDs-PxandDs-Papairs with modifiedPasubstrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules.


2008 ◽  
Vol 87 (11) ◽  
pp. 992-1003 ◽  
Author(s):  
P.N. Pushparaj ◽  
J.J. Aarthi ◽  
J. Manikandan ◽  
S.D. Kumar

RNA interference (RNAi), an accurate and potent gene-silencing method, was first experimentally documented in 1998 in Caenorhabditis elegans by Fire et al., who subsequently were awarded the 2006 Nobel Prize in Physiology/Medicine. Subsequent RNAi studies have demonstrated the clinical potential of synthetic small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) in dental diseases, eye diseases, cancer, metabolic diseases, neurodegenerative disorders, and other illnesses. siRNAs are generally from 21 to 25 base-pairs (bp) in length and have sequence-homology-driven gene-knockdown capability. RNAi offers researchers an effortless tool for investigating biological systems by selectively silencing genes. Key technical aspects—such as optimization of selectivity, stability, in vivo delivery, efficacy, and safety—need to be investigated before RNAi can become a successful therapeutic strategy. Nevertheless, this area shows a huge potential for the pharmaceutical industry around the globe. Interestingly, recent studies have shown that the small RNA molecules, either indigenously produced as microRNAs (miRNAs) or exogenously administered synthetic dsRNAs, could effectively activate a particular gene in a sequence-specific manner instead of silencing it. This novel, but still uncharacterized, phenomenon has been termed ‘RNA activation’ (RNAa). In this review, we analyze these research findings and discussed the in vivo applications of siRNAs, miRNAs, and shRNAs.


1991 ◽  
Vol 11 (12) ◽  
pp. 6109-6115 ◽  
Author(s):  
L M Pabón-Peña ◽  
Y Zhang ◽  
L M Epstein

Synthetic transcripts of satellite 2 DNA from newts undergo self-catalyzed, site-specific cleavage in vitro. Cleavage occurs within a domain that is similar to the hammerhead domain used by a number of self-cleaving, infectious plant RNAs. The newt hammerhead has a potentially unstable structure due to a stem composed of two base pairs and a 2-nucleotide loop, and unlike other hammerheads that have been studied, it cannot cleave as an isolated unit. Here we show that cleavage by a single newt hammerhead requires additional satellite 2 sequences flanking both ends of the hammerhead domain. We also present a structural model of a truncated satellite 2 transcript which is capable of cleavage. The structure includes an internally looped extension to one of the conserved stems of the hammerhead. By in vitro mutagenesis, the identities of each of the five nucleotides composing one of the internal loops were shown to be critical for cleavage. Additional evidence that the extension stimulates self-cleavage in a manner other than by simply stabilizing the hammerhead is presented.


2017 ◽  
Vol 13 ◽  
pp. 2671-2681 ◽  
Author(s):  
Jens Müller

In nucleic acid chemistry, metal-mediated base pairs represent a versatile method for the site-specific introduction of metal-based functionality. In metal-mediated base pairs, the hydrogen bonds between complementary nucleobases are replaced by coordinate bonds to one or two transition metal ions located in the helical core. In recent years, the concept of metal-mediated base pairing has found a significant extension by applying it to parallel-stranded DNA duplexes. The antiparallel-stranded orientation of the complementary strands as found in natural B-DNA double helices enforces a cisoid orientation of the glycosidic bonds. To enable the formation of metal-mediated base pairs preferring a transoid orientation of the glycosidic bonds, parallel-stranded duplexes have been investigated. In many cases, such as the well-established cytosine–Ag(I)–cytosine base pair, metal complex formation is more stabilizing in parallel-stranded DNA than in antiparallel-stranded DNA. This review presents an overview of all metal-mediated base pairs reported as yet in parallel-stranded DNA, compares them with their counterparts in regular DNA (where available), and explains the experimental conditions used to stabilize the respective parallel-stranded duplexes.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Alessandro Allegra ◽  
Manuela Mania ◽  
Angela D’Ascola ◽  
Giacomo Oteri ◽  
Enrico Nastro Siniscalchi ◽  
...  

Bisphosphonates (BPs) are inhibitors of osteoclast-mediated bone resorption used for the treatment of multiple myeloma (MM) patients with osteolytic lesions. Bisphosphonate-induced osteonecrosis of the jaw (BONJ) is an infrequent drug-caused adverse event of these agents. Long noncoding RNAs (lncRNAs) are a set of more than 200 base pairs, noncoding RNA molecules, which are critical posttranscriptional regulators of gene expression. Our study was aimed at evaluating 17 lncRNAs, whose targets were previously validated as key elements in MM, bone metabolism, and angiogenesis in MM subjects without BONJ (MM group), in MM subjects with BONJ (BONJ group), and a group of healthy controls (CTRL group). Our results demonstrated a different lncRNA profile in BONJ patients compared to MM patients and controls. Two lncRNAs (DANCR and MALAT1) were both downregulated compared to controls and MM, twelve (HOTAIR, MEG3, TP73-AS1, HOTTIP, HIF1A-AS2, MANTIS, CTD-2201E18, CTD1-2003C8, R-471B22, RP1-43E13, RP11-553L6.5, and RP1-286D6) were overexpressed in MM with BONJ, and one (H19) was upregulated compared with only MM. Two lncRNAs (JHDMD1 and MTMR9LP) had higher expression, but these differences were not statistically significant. The examined lncRNAs target several genes and metabolic pathways. An altered lncRNA signature could contribute to the onset of BONJ or have a protective action. Targeting these lncRNAs could offer a possibility for the prevention or therapy of BONJ.


Sign in / Sign up

Export Citation Format

Share Document