scholarly journals Correction to “Quantifying Functional Group Interactions That Determine Urea Effects on Nucleic Acid Helix Formation”

2013 ◽  
Vol 135 (24) ◽  
pp. 9220-9220 ◽  
Author(s):  
Emily J. Guinn ◽  
Jeffrey J. Schwinefus ◽  
Hyo Keun Cha ◽  
Joseph L. McDevitt ◽  
Wolf E. Merker ◽  
...  
2013 ◽  
Vol 135 (15) ◽  
pp. 5828-5838 ◽  
Author(s):  
Emily J. Guinn ◽  
Jeffrey J. Schwinefus ◽  
Hyo Keun Cha ◽  
Joseph L. McDevitt ◽  
Wolf E. Merker ◽  
...  

2004 ◽  
Vol 69 (4) ◽  
pp. 715-747 ◽  
Author(s):  
Miroslav Fojta

This review is devoted to applications of mercury electrodes in the electrochemical analysis of nucleic acids and in studies of DNA structure and interactions. At the mercury electrodes, nucleic acids yield faradaic signals due to redox processes involving adenine, cytosine and guanine residues, and tensammetric signals due to adsorption/desorption of polynucleotide chains at the electrode surface. Some of these signals are highly sensitive to DNA structure, providing information about conformation changes of the DNA double helix, formation of DNA strand breaks as well as covalent or non-covalent DNA interactions with small molecules (including genotoxic agents, drugs, etc.). Measurements at mercury electrodes allow for determination of small quantities of unmodified or electrochemically labeled nucleic acids. DNA-modified mercury electrodes have been used as biodetectors for DNA damaging agents or as detection electrodes in DNA hybridization assays. Mercury film and solid amalgam electrodes possess similar features in the nucleic acid analysis to mercury drop electrodes. On the contrary, intrinsic (label-free) DNA electrochemical responses at other (non-mercury) solid electrodes cannot provide information about small changes of the DNA structure. A review with 188 references.


2015 ◽  
Vol 13 (8) ◽  
pp. 2366-2374 ◽  
Author(s):  
Vipin Kumar ◽  
Venkitasamy Kesavan ◽  
Kurt V. Gothelf

Homopyrimidine acyclic (l)-threoninol nucleic acid (aTNA) was synthesized and found to form highly stable (l)-aTNA–DNA–(l)-aTNA and (l)-aTNA–RNA–(l)-aTNA triple helical structures.


2005 ◽  
Vol 83 (10) ◽  
pp. 1731-1740 ◽  
Author(s):  
Robert HE Hudson ◽  
Filip Wojciechowski

We have investigated the incorporation of C6 derivatives of uracil into polypyrimidine peptide nucleic acid oligomers. Starting with uracil-6-carboxylic acid (orotic acid), a peptide nucleic acid monomer compatible with Fmoc-based synthesis was prepared. This monomer then served as a convertible nucleobase whereupon treatment of the resin-bound methyl orotate containing hexamers with hydroxide or amines cleanly converted the ester to an orotic acid or orotamide-containing peptide nucleic acid. Peptide nucleic acid hexamers containing the C6-modified nucleobase hybridized to both poly(riboadenylic acid) and poly(deoxyriboadenylic acid) via triplex formation. Complexes formed with poly(riboadenylic acid) were more stable than those formed with poly(dexoyriboadenylic acid), as measured by temperature-dependent UV spectroscopy. However, both of these complexes were destabilized relative to the complexes formed by an unmodified peptide nucleic acid oligomers. Internal or doubly substituted hexamers are destabilized more strongly than a terminally substituted one, and the type of substitution (carboxamide, ester, carboxylic acid) affects the overall triplex stability. These results clearly show that incorporation of a C6-substituted uracil into polypyrimidine PNA is detrimental to triplex formation. We have also extended this chemistry to incorporate uracil-5-methylcarboxylate into a peptide nucleic acid hexamer. After on-resin conversion of the C5 ester to the 3-(N,N-dimethylamino)propylamide, significant stabilization of the triplex formed with poly(riboadenylic acid) was observed, which illustrates the compatibility of C5 substitution with peptide nucleic acid directed triple helix formation. Key words: peptide nucleic acid, triple helix, orotic acid, orotamide, PNA.


Sign in / Sign up

Export Citation Format

Share Document