Adsorption of C1–C4 Alcohols in Zeolitic Imidazolate Framework-8: Effects of Force Fields, Atomic Charges, and Framework Flexibility

2013 ◽  
Vol 117 (48) ◽  
pp. 25628-25635 ◽  
Author(s):  
Kang Zhang ◽  
Liling Zhang ◽  
Jianwen Jiang
2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


Author(s):  
Frank Jensen

We review different models for introducing electrical polarization in force fields, with special focus on methods where polarization is modelled at the atomic charge level. While electric polarization has been...


2019 ◽  
Author(s):  
Alex Zhou ◽  
Michael Schauperl ◽  
Paul Nerenberg

<p>The accuracy of classical molecular mechanics (MM) force fields used for condensed phase molecular simulations depends strongly on the accuracy of modeling nonbonded interactions between atoms, such as electrostatic interactions. Some popular fixed-charge MM force fields use partial atomic charges derived from gas phase electronic structure calculations using the Hartree-Fock method with the relatively small 6-31G* basis set (HF/6-31G*). It is generally believed that HF/6-31G* generates fortuitously overpolarized electron distributions, as would be expected in the higher dielectric environment of the condensed phase. Using a benchmark set of 47 molecules we show that HF/6-31G* overpolarizes molecules by just under 10% on average with respect to experimental gas phase dipole moments. The overpolarization of this method/basis set combination varies significantly though and, in some cases, even leads to molecular dipole moments that are lower than experimental gas phase measurements. We further demonstrate that using computationally inexpensive density functional theory (DFT) methods, together with appropriate augmented basis sets and a continuum solvent model, can yield molecular dipole moments that are both more strongly and more uniformly overpolarized. These data suggest that these methods – or ones similar to them – should be adopted for the derivation of accurate partial atomic charges for next-generation MM force fields.<br></p>


Author(s):  
Peter J. Winn ◽  
Gy�rgy G. Ferenczy ◽  
Christopher A. Reynolds
Keyword(s):  

2019 ◽  
Author(s):  
Alex Zhou ◽  
Michael Schauperl ◽  
Paul Nerenberg

<p>The accuracy of classical molecular mechanics (MM) force fields used for condensed phase molecular simulations depends strongly on the accuracy of modeling nonbonded interactions between atoms, such as electrostatic interactions. Some popular fixed-charge MM force fields use partial atomic charges derived from gas phase electronic structure calculations using the Hartree-Fock method with the relatively small 6-31G* basis set (HF/6-31G*). It is generally believed that HF/6-31G* generates fortuitously overpolarized electron distributions, as would be expected in the higher dielectric environment of the condensed phase. Using a benchmark set of 47 molecules we show that HF/6-31G* overpolarizes molecules by just under 10% on average with respect to experimental gas phase dipole moments. The overpolarization of this method/basis set combination varies significantly though and, in some cases, even leads to molecular dipole moments that are lower than experimental gas phase measurements. We further demonstrate that using computationally inexpensive density functional theory (DFT) methods, together with appropriate augmented basis sets and a continuum solvent model, can yield molecular dipole moments that are both more strongly and more uniformly overpolarized. These data suggest that these methods – or ones similar to them – should be adopted for the derivation of accurate partial atomic charges for next-generation MM force fields.<br></p>


1997 ◽  
Vol 101 (30) ◽  
pp. 5437-5445 ◽  
Author(s):  
Peter J. Winn ◽  
György G. Ferenczy ◽  
Christopher A. Reynolds
Keyword(s):  

2019 ◽  
Author(s):  
Alex Zhou ◽  
Michael Schauperl ◽  
Paul Nerenberg

<div><div><div><p>The accuracy of classical molecular mechanics (MM) force fields used for condensed phase molecular simulations depends strongly on the accuracy of modeling nonbonded interactions between atoms, such as electrostatic interactions. Some popular fixed-charge MM force fields use partial atomic charges derived from gas phase electronic structure calculations using the Hartree-Fock method with the relatively small 6-31G* basis set (HF/6-31G*). It is generally believed that HF/6-31G* generates fortuitously overpolarized electron distributions, as would be expected in the higher dielectric environment of the condensed phase. Using a benchmark set of 47 molecules, we show that HF/6-31G* does not uniformly overpolarize molecules and in some cases even leads to molecular dipole moments that are lower than experimental gas phase measurements. We further demonstrate that using computationally inexpensive density functional theory (DFT) methods, together with appropriate augmented basis sets and a continuum solvent model, can yield molecular dipole moments that are both more strongly and more uniformly overpolarized. These data suggest that these methods – or ones similar to them – should be adopted for the derivation of accurate partial atomic charges for next-generation MM force fields.</p></div></div></div>


2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


Sign in / Sign up

Export Citation Format

Share Document