Ferrihydrite dissolution at the root zone of crops under semi-arid condition controls the plant uptake of uranium and arsenic

Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray
2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Author(s):  
A. G. Swaminathan ◽  
K. P. Hariprasad ◽  
A. V. Suryawanshi ◽  
G. B. Kadam ◽  
Vilas S. Ghule

2019 ◽  
Vol 50 (20) ◽  
pp. 2534-2543 ◽  
Author(s):  
Somayeh Jan Ahmadi ◽  
Forough Mortazaeinezhad ◽  
Hossein Zeinali ◽  
Omid Askari-Khorasgani ◽  
Mohammad Pessarakli

2015 ◽  
Vol 524 ◽  
pp. 296-310 ◽  
Author(s):  
Feifei Pan ◽  
Michael Nieswiadomy ◽  
Shuan Qian

Soil Research ◽  
1984 ◽  
Vol 22 (2) ◽  
pp. 181 ◽  
Author(s):  
DR Scotter ◽  
IH Mohammed ◽  
PEH Gregg

A simple model describing the transformations, leaching and plant uptake of the nitrogen (N) in urea fertilizer applied to a barley crop is presented. The model considers the root zone as a single compartment and uses daily time steps, and so can be run on a small programmable calculator. It consists of separate submodels for water, fertilizer N and native soil N. Data from a field experiment described in a companion paper were used for parameterization, and the model was then tested on another data set from that experiment. The model successfully predicted the effect, on the leaching and plant uptake of fertilizer N, of a large increase in rainfall plus irrigation from 103 mm to 186 mm in the 35 days following sowing and urea application. As an example of the model's utility, it is used to predict that if 30 mm of drainage occurred within 24 h of fertilizer application, about 33% of the fertilizer N would be leached from the root zone in the silt loam soil studied. However, the same amount of drainage occurring a week after fertilizer application would result only in about 8% of the fertilizer N being leached. The complementary roles that process-oriented field experiments and simple mechanistic models can play in soil fertility research are discussed.


2016 ◽  
Vol 176 ◽  
pp. 180-190 ◽  
Author(s):  
Ramazan Topak ◽  
Bilal Acar ◽  
Refik Uyanöz ◽  
Ercan Ceyhan

Sign in / Sign up

Export Citation Format

Share Document