Next generation cancer diagnostics: A microfluidic electromechanochemical platform for tissue dissociation

Author(s):  
Celeste Welch
Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1691
Author(s):  
Muscarella ◽  
Fabrizio ◽  
De Bonis ◽  
Mancini ◽  
Balsamo ◽  
...  

Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology, a rapid workflow for DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissue samples, as well as producing high quality library preparation, can be real challenges. Here we consider these targets and how applying effective automation technology to NGS workflows may help improve yield, timing and quality-control. We firstly evaluated DNA recovery from archived FFPE blocks from three different manual extraction methods and two automated extraction workstations. The workflow was then implemented to somatic (lung/colon panel) and germline (BRCA1/2) library preparation for NGS analysis exploiting two automated workstations. All commercial kits gave good results in terms of DNA yield and quality. On the other hand, the automated workstation workflow has been proven to be a valid automatic extraction system to obtain high quality DNA suitable for NGS analysis (lung/colon Ampli-seq panel). Moreover, it can be efficiently integrated with an open liquid handling platform to provide high-quality libraries from germline DNA with more reproducibility and high coverage for targeted sequences in less time (BRCA1/2). The introduction of automation in routine workflow leads to an improvement of NGS standardization and increased scale up of sample preparations, reducing labor and timing, with optimization of reagents and management.


Author(s):  
Xiaoliang Wu ◽  
Lin Zhu ◽  
Patrick C. Ma

In recent years, there has been a revolutionary expansion in technologic advances and therapeutic innovations in cancer medicine. Cancer diagnostics has begun to move away from a sole dependence on direct tumor tissue biopsy for cancer detection, diagnosis, and treatment monitoring. The need for improvement in molecular cancer diagnostics has never been more important, with not only the advent of cancer genomics and genomics-guided precision medicine but also the recent arrival of cancer immunotherapies. Owing to the practical limitations and risks associated with tissue-based biopsy diagnostics, novel noninvasive cancer diagnostics platforms have continued to evolve and expand in recent years. Examples of these platforms include the liquid biopsy, which is used to interrogate ctDNA or circulating tumor cells, proteomics, metabolomics, and exosomes; the urine biopsy, which is used to assay ctDNAs; saliva and stool biopsies, which are used for molecular genomics assays; and the breath biopsy, which measures volatile organic compounds. These next-generation noninvasive molecular diagnostics assays beyond tissues fundamentally transform the potential utilities of cancer diagnostics to enable repeat, prospective, and serial longitudinal “biopsies” to monitor disease response resistance and progression on therapies. Moreover, they allow continual interrogation and molecular in-depth analysis of the evolving tumor’s pan-canceromics under therapeutic stress. These technological and diagnostic advances have already brought about paradigm-changing next-generation cancer therapeutic strategies to enhance overall treatment efficacies. This article reviews the key noninvasive next-generation molecular diagnostics platforms beyond tissues, with emphasis on clinical utilities and applications.


2004 ◽  
Vol 171 (4S) ◽  
pp. 476-476 ◽  
Author(s):  
Katharina König ◽  
Jürgen Pannek ◽  
Ulrich Scheipers ◽  
Helmut Ermert ◽  
Statis Phillippou ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 389-389
Author(s):  
Manoj Monga ◽  
Ramakrishna Venkatesh ◽  
Sara Best ◽  
Caroline D. Ames ◽  
Courtney Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document