scholarly journals Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models

2001 ◽  
Vol 15 (1) ◽  
pp. 183-206 ◽  
Author(s):  
A. D. McGuire ◽  
S. Sitch ◽  
J. S. Clein ◽  
R. Dargaville ◽  
G. Esser ◽  
...  
2016 ◽  
Author(s):  
Kerstin Engström ◽  
Mats Lindeskog ◽  
Stefan Olin ◽  
John Hassler ◽  
Benjamin Smith

Abstract. Reducing greenhouse gas emissions to limit climate change-induced damage to the global economy and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining a climate-economy model, a socio-economic land-use model and an ecosystem model. We develop reference and mitigation scenarios based on the Shared Socio-economic Pathways (SSPs) framework. Taking emissions from the land-use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 "Taking the green road"). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.


2017 ◽  
Vol 8 (3) ◽  
pp. 773-799 ◽  
Author(s):  
Kerstin Engström ◽  
Mats Lindeskog ◽  
Stefan Olin ◽  
John Hassler ◽  
Benjamin Smith

Abstract. Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.


Author(s):  
Louis J. Pignataro ◽  
Joseph Wen ◽  
Robert Burchell ◽  
Michael L. Lahr ◽  
Ann Strauss-Wieder

The purpose of the Transportation Economic and Land Use System (TELUS) is to convert the transportation improvement program (TIP) into a management tool. Accordingly, the system provides detailed and easily accessible information on transportation projects in the region, as well as their interrelationships and impacts. By doing so, TELUS enables public-sector agencies to meet organizational, Intermodal Surface Transportation Efficiency Act, state, and other mandates more effectively. The objectives are accomplished by providing the computer-based capability to analyze, sort, combine, and track transportation projects in or under consideration for a TIP; assessing the interrelationships among significant transportation projects; estimating the regional economic and land use effects of transportation projects; and presenting project information in an easily understood format, including geographic information system formats.


2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2014 ◽  
Vol 41 ◽  
pp. 220-228 ◽  
Author(s):  
Yuchen Cui ◽  
Sabyasachee Mishra ◽  
Timothy F. Welch

2008 ◽  
Vol 106 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Eunice Maia de Andrade ◽  
Helba Araújo Queiroz Palácio ◽  
Ivam Holanda Souza ◽  
Raimundo Alípio de Oliveira Leão ◽  
Maria João Guerreiro

Sign in / Sign up

Export Citation Format

Share Document