scholarly journals Late Cretaceous tectonic history of the Sierra-Salinia-Mojave arc as recorded in conglomerates of the Upper Cretaceous and Paleocene Gualala Formation, northern California

2004 ◽  
Vol 109 (B2) ◽  
Author(s):  
Ronald C. Schott ◽  
Clark M. Johnson ◽  
James R. O'Neil
1991 ◽  
Vol 31 (1) ◽  
pp. 143 ◽  
Author(s):  
D.C. Lowry ◽  
I.M. Longley

The tectonic history of the northern flank of the offshore Gippsland Basin can be divided into three phases:an Early Cretaceous rift phase (120-98 Ma) with deposition of the Strzelecki Group and extension in a northeast-southwest direction.a mid-Cretaceous phase (98-80 Ma) with deposition of the Golden Beach Group and extension in a northwest- southeast direction anda Late Cretaceous to Tertiary sag phase with intermittent compression or wrenching.Previous workers have described the first and third phases. This paper argues for a distinctive second phase with extension at right angles to the first phase. The complex Cretaceous structure in the Kipper-Hammerhead area is interpreted in terms of a model in which transfer faults of the first phase became domino faults of the second phase.


GeoArabia ◽  
2006 ◽  
Vol 11 (4) ◽  
pp. 17-40 ◽  
Author(s):  
Marc Fournier ◽  
Claude Lepvrier ◽  
Philippe Razin ◽  
Laurent Jolivet

ABSTRACT After the obduction of the Semail ophiolitic nappe onto the Arabian Platform in the Late Cretaceous, north Oman underwent several phases of extension before being affected by compression in the framework of the Arabia-Eurasia convergence. A tectonic survey, based on structural analysis of fault-slip data in the post-nappe units of the Oman Mountains, allowed us to identify major events of the Late Cretaceous and Cenozoic tectonic history of northern Oman. An early ENE-WSW extensional phase is indicated by synsedimentary normal faults in the Upper Cretaceous to lower Eocene formations. This extensional phase, which immediately followed ductile extension and exhumation of high-pressure rocks in the Saih Hatat region of the Oman Mountains, is associated with large-scale normal faulting in the northeast Oman margin and the development of the Abat Basin. A second extensional phase, recorded in lower Oligocene formations and only documented by minor structures, is characterized by NNE (N20°E) and NW (N150°E) oriented extensions. It is interpreted as the far-field effect of the Oligocene-Miocene rifting in the Gulf of Aden. A late E-W to NE-SW directed compressional phase started in the late Oligocene or early Miocene, shortly after the collision in the Zagros Mountains. It is attested by folding, and strike-slip and reverse faulting in the Cenozoic series. The direction of compression changed from ENE-WSW in the Early Miocene to almost N-S in the Pliocene.


2019 ◽  
Vol 89 (10) ◽  
pp. 1039-1054 ◽  
Author(s):  
Zhicai Zhu ◽  
Qingguo Zhai ◽  
Peiyuan Hu ◽  
Sunlin Chung ◽  
Yue Tang ◽  
...  

ABSTRACT The closure of the Bangong–Nujiang Tethyan Ocean (BNTO) and consequent Lhasa–Qiangtang collision is vital to reasonably understanding the early tectonic history of the Tibetan Plateau before the India-Eurasia collision. The timing of the Lhasa–Qiangtang collision was mainly constrained by the ophiolite and magmatic rocks in previous studies, with only limited constraints from the sedimentary rocks within and adjacent to the Bangong–Nujiang suture zone. In the middle segment of the Bangong–Nujiang suture zone, the Duoni Formation, consisting of a fluvial delta sequence with minor andesite interlayers, was originally defined as the Late Cretaceous Jingzhushan Formation and interpreted as the products of the Lhasa–Qiangtang collision during the Late Cretaceous. Our new zircon U-Pb data from two samples of andesite interlayers demonstrate that it was deposited during the latest Early Cretaceous (ca. 113 Ma) rather than Late Cretaceous. Systemic studies on the sandstone detrital model, heavy-mineral assemblage, and clasts of conglomerate demonstrate a mixed source of both Lhasa and Qiangtang terranes and ophiolite complex. Clasts of conglomerate contain abundant angular peridotite, gabbro, basalt, chert, andesite, and granite, and minor quartzite and gneiss clasts also exist. Sandstones of the Duoni Formation are dominated by feldspathic–lithic graywacke (Qt25F14L61 and Qm13F14L73), indicative of a mixture of continental-arc and recycled-orogen source origin. Detrital minerals of chromite, clinopyroxene, epidote, and hornblende in sandstone also indicate an origin of ultramafic and mafic rocks, while garnets indicate a metamorphosed source. Paleocurrent data demonstrate bidirectional (southward and northward) source origins. Thus, we suggest that the deposition of the Duoni Formation took place in the processes of the Lhasa–Qiangtang collision during the latest Early Cretaceous (∼ 113 Ma), and the BNTO had been closed by this time.


1999 ◽  
Vol 39 (1) ◽  
pp. 297 ◽  
Author(s):  
D.S. Edwards ◽  
H.I.M. Struckmeyer ◽  
M.T. Bradshaw ◽  
J.E. Skinner

The hydrocarbons discovered to date on the southern margin of Australia have been assigned to the Austral Petroleum Supersystem based on the age of their source rocks and common tectonic history. Modelling of the source facies distribution within this supersystem using tectonic, climatic and geographic history of the southern margin basins, suggests the presence of a variety of source rocks deposited in saline playa lakes, fluvial, lacustrine, deltaic and anoxic marine environments.Testing of the palaeogeographic model using geochemical characteristics of liquid hydrocarbons confirms the three-fold subdivision (Al, A2 and A3) of the Austral Petroleum Supersystem.Bass Basin oils are assigned to the Austral 3, Eastern View Petroleum System. The presence of oleanane in the biomarker assemblages of these oils, together with their negatively sloping, heavy, isotopic profiles, indicate derivation from Upper Cretaceous-Tertiary fluvio–deltaic source facies.In the eastern Otway Basin, oils of the Austral 2, Eumeralla Petroleum System are sourced by Lower Cretaceous (Aptian–Albian) coaly facies. Oil shows reservoired in the Wigunda Formation at Greenly-1 in the Duntroon Basin are possibly sourced from the Borda Formation and are assigned to the Austral 2, Borda Petroleum System.In the western Otway, Duntroon and Bight basins, a lack of definitive oil-source rock correlations precludes the identification of individual Austral 1 petroleum systems.


2010 ◽  
Vol 181 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Géraldine Garcia ◽  
Sauveur Amico ◽  
Francois Fournier ◽  
Eudes Thouand ◽  
Xavier Valentin

Abstract A new titanosaur, Atsinganosaurus velauciensis, gen. and sp. nov. is described from well-preserved remains from the new Upper Cretaceous locality of Velaux-La Bastide Neuve (Aix-en-Provence Basin, France). This taxon is mainly diagnosed by a combination of characters, which differentiates it without ambiguity from other European Late Cretaceous taxa (Lirainosaurus, Ampelosaurus and Magyarosaurus). Atsinganosaurus confirms the presence in western Europe during the latest Cretaceous of a third titanosaurian species, slender and less derived which allows us to better understand the evolutionary and paleobiogeographical history of this group during the Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document