Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre

Space Weather ◽  
2007 ◽  
Vol 5 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. Feltens
1995 ◽  
Vol 10 ◽  
pp. 291-293
Author(s):  
Martin C.E. Huber ◽  
Arne Pedersen ◽  
Claus Fröhlich

There is one astrophysical system, where the sites of a star’s mass loss can be localised and observed in detail, and where the behaviour of the resulting stellar wind in the star’s environment and around orbiting obstacles can be investigated in situ: it is the Sun, the heliosphere and the surroundings of planets — among the latter most prominently the terrestrial magnetosphere. Indeed, within a year or so a fleet of satellites equipped with sophisticated remote-sensing and in-situ instruments will make this astronomical paradigm, or more precisely, the solar-terrestrial system accessible to intensive, multi-disciplinary study.Four identical CLUSTER spacecraft, orbiting the Earth within the magnetosphere, the surrounding space and the particularly interesting plasma boundary layers will perform a three-dimensional in-situ study of plasma-heating, particle-acceleration and other small-scale plasma processes (Schmidt and Goldstein,1988). A number of other missions — some of them already in orbit, like GEOTAIL and WIND, some to be launched within one or two years, like INTERBALL and POLAR — will provide information about the Earth’s magnetosphere and the solar wind on larger spatial scales. These missions are described in a Brochure issued jointly by the European Space Agency, NASA, the Japanese Institute of Space and Astronomical Science and the Rssian Space Agency, which can be obtained from A. Pedersen at the above address.


2019 ◽  
Vol 11 (18) ◽  
pp. 2099 ◽  
Author(s):  
Mauro Mariotti d’Alessandro ◽  
Stefano Tebaldini

This paper presents an algorithm for simulating tomographic synthetic aperture radar (SAR) data based on another stack actually gathered by a real acquisition system. Through the procedure here proposed, the simulated system can be evaluated according to its capability to image complex natural media rather than reference point targets. This feature is particularly important whenever the biophysical properties of the target of interest must be preserved and cannot be easily modeled. The system to be simulated may be different from the original one concerning resolution, off-nadir angles, bandwidth and central frequency. The algorithm here proposed handles these differences by properly taking into account the wavenumbers of the target illuminated by the real survey and requested by the simulated one. The complex images constituting the synthetic stack are associated with the effective vertical interferometric wavenumber peculiar of the geometry to be simulated, regardless of the original data. Furthermore, the three-dimensional resolution cell of the simulated tomographic system is consistent with the simulated geometry concerning size and spatial orientation. These two latter features cannot be guaranteed by simply filtering the original stack. The simulator here proposed has been used to simulate the tomographic stack expected from the forthcoming European Space Agency (ESA) BIOMASS mission. The relationship between baseline distribution and 3D focusing capability was explored; special attention has been paid to the robustness of tomographic power at being a good proxy for the above ground biomass in tropical regions.


Author(s):  
Alessandro Donati ◽  
◽  
Jose Antonio Martinez-Heras ◽  
Nicola Policella

Future European Space Agency (ESA) space missions are demanding and driving new operations concepts for increased on-board autonomy, for flexible and robust planning and scheduling services, and for ground capabilities to agglomerate and process a huge amount of downlinked data (e.g., tens of thousands of telemetry parameters) to extract high-level information and knowledge. Mission control will have to cope with maintaining and programming challenging missions such as interplanetary probes, complex scientific missions, and a constellation of earth-observation missions. The process of innovation in these areas is already progressing at the European Space Operations Centre (ESOC) of the ESA, and this paper highlights specific achievements and trends in the area of spacecraft diagnosis and mission planning and scheduling by making use of a variety of technologies and techniques. The discussion then focuses on the tools’ operational impact and on the expected trends in the future.


2018 ◽  
Vol 17 (1) ◽  
pp. 11-23
Author(s):  
Nidhi Sabu ◽  
Thomaskutty Francis ◽  
Arun Roy ◽  
Sreeja S Kartha

In this paper we attempt to study an ongoing astrometry mission of the European Space Agency (ESA), named Gaia, whose aim is to make the largest and most precise three-dimensional map of our Galaxy. We present the scientific goals of Gaia and give a brief description of the spacecraft. We also present a preliminary analysis of comparing distance estimates of Be stars from the first Gaia data release, Gaia DR1, and Hipparcos mission. From our analysis, we confirm that Gaia stands out as a promising mission in terms of the distance measurements when compared to Hipparcos, particularly for distances greater than 1 kpc.


Author(s):  
Maurizio Bottoni ◽  
Simone Mantovani

The European Space Agency (ESA) in an “Invitation to Tender”, dated August 15, 2006, illustrated a feasibility study of the Interaction in Cosmic and Atmospheric Particle System (ICAPS) experiment. The experiment consists essentially of thermal elements, contained in a cylindrical box, the center of which is a trapping area for thermally confined particles floating in a rarefied gas within the chamber. Thermophoretic forces induced by thermal gradients concentrate particles carried from the gas into the trapping area. Particles are eventually collected from this area. The physical dimensions of the experiment and of its components, temperature gradients and locations the thermal elements within the chamber are free parameters that should be experimentally and numerically investigated to enhance the efficiency of the experiment in collecting particles in the trapping area. To enable numerical investigations of the proposed device a two-dimensional computer program called THERCONF-2D (THERmal CONFinement in 2D) has been build up as a first step towards a full three-dimensional representation of the experiment. This code version describes the displacement due to thermophoresis of tiny particles in a gas-filled domain subjected to a temperature gradient. The behavior of the gas molecules and their interaction with material surfaces and with the particles floating in the gas are modeled with the statistical methods of molecular dynamics, based on the “Direct Simulation Monte Carlo” (DSMC). The computational code has extensive post-processing capabilities for visualization of computational results. After verification of the code, current work is aiming at identifying the optimum combination of physical parameters allowing for the best efficiency of the thermal confinement, minimizing the loss of particles escaping from the collecting area. A variant of the code is being installed on parallel processors. The article presents the state-of-the-art of this computational endeavor.


2020 ◽  
Author(s):  
Alessandro Sozza ◽  
Massimo Cencini ◽  
Leonardo Parisi ◽  
Marco Acernese ◽  
Fabio Santoni ◽  
...  

<p>The monitoring of space debris and satellites orbiting around Earth is an essential topic in the space surveillance. The impact of debris, even of small size, against active spatial installations causes serious damage, malfunctions and potential service interruptions. Collision-avoidance maneuverings are often performed but they require increasingly complex protocols. Density of space debris is now so high that even astronomical observations are often degraded by it. Although it does not affect space weather, it may interfere with weather satellites.<br>We have developed an innovative experimental technique based on stereometry at intercontinental scale to obtain simultaneous images from two optic observatories, installed in Rome (at the Urbe Airport and in Collepardo on the Apennines) and in Malindi (Kenya). From the observations on Earth, it's possible to reconstruct the three-dimensional position and velocity of the objects. The distance between the two observatories is crucial for an accurate reconstruction. In particular, we have considered the sites of Urbe and Collepardo, with a baseline of 80 km, to detected Low-Earth orbits (LEO), while we have considered a baseline of 6000 km, between Urbe and Malindi, to observe geostationary orbits (GEO).<br>We will present the validation of the three-dimensional reconstruction method via a fully synthetic procedure that propagate the satellite trajectory, using SGP4 model and TLEs data (provided by NASA), and generate synthetic photographs of the satellite passage from the two observatories. Then we will compare the synthetic results with the experimental results obtained using real optic systems. The procedure can be automatized to identify unknown space objects and even generalized for an arbitrary number of sites of observation. The identified debris will be added to the catalogue DISCOS (Database and Information System Characterizing Objects in Space) owned by the European Space Agency (ESA) to improve the space surveillance and the ability to intervene in the case of potential risks. </p>


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document