scholarly journals Global Bio-optical Algorithms for Ocean Color Satellite Applications: Inherent Optical Properties Algorithm Workshop at Ocean Optics XIX; Barga, Italy, 3–4 October 2008

Eos ◽  
2009 ◽  
Vol 90 (1) ◽  
pp. 4 ◽  
Author(s):  
Jeremy Werdell
2013 ◽  
Vol 52 (10) ◽  
pp. 2019 ◽  
Author(s):  
P. Jeremy Werdell ◽  
Bryan A. Franz ◽  
Sean W. Bailey ◽  
Gene C. Feldman ◽  
Emmanuel Boss ◽  
...  

Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics, limnology, atmospheric optics, and remote sensing of ocean and global climate change.


Author(s):  
Kendall L. Carder ◽  
David K. Costello

Two important problems facing the ocean optics research community in the coming decade concern optical model closure and inversion (see Chapter 3). We obtain model closure if we can describe the measured light environment by combining elementary measurements of the optical properties of the medium with radiative transfer theory. If we can accurately deduce the concentration of various constituents from a combination of measures of the submarine light field and inverse model calculations, we term this process model inversion. The most elementary measurements of the optical properties of the sea are those that are independent of the geometry of the light field, the inherent optical properties (Preisendorfer, 1961). Optical properties that are dependent on the geometry of the light field are termed apparent optical properties (AOP). Models of the submarine light field typically relate apparent optical properties to inherent optical properties (see Chapter 2). Examples include the relationship between the AOP irradiance reflectance R and a combination of inherent optical properties (backscattering coefficient bb and absorption coefficient a), and the relationship between the AOP downwelling diffuse attenuation coefficient kd and a combination of the absorption coefficient, backscattering coefficient, and downwelling average cosine μd (e.g., Gordon et al., 1975; Morel and Prieur, 1977; Smith and Baker, 1981; Morel, 1988; Kirk, 1984a). Under some circumstances these relationships work well enough that the absorption coefficient can be derived indirectly. This is important since measurement of the absorption coefficient by direct means has been difficult. Derived values for the absorption coefficient by model inversion methods are not easily verified by independent measurements, however, because of the difficulty of measuring the absorption coefficient. Model closure and model inversion both become more tenuous when the following phenomena are present: 1. Transpectral or inelastic scattering such as fluorescence (e.g., Gordon, 1979; Carder and Steward, 1985; Mitchell and Kiefer, 1988a; Spitzer and Dirks, 1985; Hawes and Carder, 1990) or water Raman scattering (Marshall and Smith, 1990; Stavn, 1990; Stavn and Weidemann, 1988a,b; Peacock et al, 1990; Chapter 12 this volume). 2. Particles that are large relative to the measurement volume for inherent optical property meters such as beam transmissometers, light-scattering photometers, fluorometers, and absorption meters.


2010 ◽  
Vol 66 (6) ◽  
pp. 815-830 ◽  
Author(s):  
Palanisamy Shanmugam ◽  
Yu-Hwan Ahn ◽  
Joo-Hyung Ryu ◽  
Balasubramanian Sundarabalan

Sign in / Sign up

Export Citation Format

Share Document