Estimation of Leaf Photosynthetic Capacity From Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation

Author(s):  
Shaoqiang Wang ◽  
Yue Li ◽  
Weimin Ju ◽  
Bin Chen ◽  
Jinghua Chen ◽  
...  
1997 ◽  
Vol 77 (3) ◽  
pp. 427-431 ◽  
Author(s):  
Jean-Pierre Privé ◽  
J. A. Sullivan ◽  
J. T. A. Proctor

Seasonal changes in leaf net carbon exchange rate (NCER), stomatal conductance (gs), and intercellular CO2 (ci) were determined for 2-yr-old potted Autumn Bliss (Rubus idaeus L.) plants grown under field conditions. NCER varied inconsistently between leaves which subtended fruiting lateral branches (laterals) and those that did not. In leaves with fruiting laterals, it was lower on three dates, similar on three other dates and once greater than in leaves without fruiting laterals. Evidence of nonstomatal inhibition of photosynthesis was also apparent as leaf NCER and gs fluctuated during the season while ci remained relatively constant. The leaf chlorophyll content increased when fruiting laterals were present, but this did not produce a consistently higher leaf NCER. The SPAD-501 meter provided a rapid and accurate, nondestructive estimate of leaf chlorophyll content for Autumn Bliss red raspberry leaves. Under uniform environmental conditions, all healthy, fully expanded leaves along the primocane had the same photosynthetic potential. Also, leaf age did not influence leaf gas exchange until the leaves started to senesce. Therefore, good light interception throughout the canopy is needed to optimize dry matter production in primocane-fruiting red raspberries. Key words: Rubus idaeus L., primocane-fruiting, leaf gas exchange


2017 ◽  
Vol 23 (9) ◽  
pp. 3513-3524 ◽  
Author(s):  
Holly Croft ◽  
Jing M. Chen ◽  
Xiangzhong Luo ◽  
Paul Bartlett ◽  
Bin Chen ◽  
...  

Author(s):  
Toshiyuki Sakai ◽  
Akira Abe ◽  
Motoki Shimizu ◽  
Ryohei Terauchi

Abstract Characterizing epistatic gene interactions is fundamental for understanding the genetic architecture of complex traits. However, due to the large number of potential gene combinations, detecting epistatic gene interactions is computationally demanding. A simple, easy-to-perform method for sensitive detection of epistasis is required. Due to their homozygous nature, use of recombinant inbred lines (RILs) excludes the dominance effect of alleles and interactions involving heterozygous genotypes, thereby allowing detection of epistasis in a simple and interpretable model. Here, we present an approach called RIL-StEp (recombinant inbred lines stepwise epistasis detection) to detect epistasis using single nucleotide polymorphisms in the genome. We applied the method to reveal epistasis affecting rice (Oryza sativa) seed hull color and leaf chlorophyll content and successfully identified pairs of genomic regions that presumably control these phenotypes. This method has the potential to improve our understanding of the genetic architecture of various traits of crops and other organisms.


1990 ◽  
Vol 117 (2) ◽  
pp. 167 ◽  
Author(s):  
Amrita G. de Soyza ◽  
Dwight T. Kincaid ◽  
Carlos R. Ramirez

Sign in / Sign up

Export Citation Format

Share Document