Protein kinase inhibitor K-252a and fusicoccin induce similar initial changes in ion transport of parsley suspension cells

1992 ◽  
Vol 85 (3) ◽  
pp. 483-488
Author(s):  
Heinrich Kauss ◽  
Wolfgang Jeblick ◽  
Uwe Conrath
2007 ◽  
Vol 74 (3) ◽  
pp. A34-A35
Author(s):  
M SCHLEISS ◽  
M MCVOY ◽  
X CUI ◽  
Y CHOI ◽  
J ANDERSON ◽  
...  

2000 ◽  
Vol 349 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Lihua ZHENG ◽  
Long YU ◽  
Qiang TU ◽  
Min ZHANG ◽  
Hua HE ◽  
...  

Two novel members of the human cAMP-dependent protein kinase inhibitor (PKI) gene family, PKIB and PKIG, were cloned. The deduced proteins showed 70% and 90% identity with mouse PKIβ and PKIγ respectively. Both the already identified pseudosubstrate site and leucine-rich nuclear export signal motifs were defined from the 11 PKIs of different species. The PKIB and PKIG genes were mapped respectively to chromosome 6q21-22.1, using a radiation hybrid GB4 panel, and to chromosome 20q13.12-13.13, using a Stanford G3 panel. Northern-blot analysis of three PKI isoforms, including the PKIA identified previously, revealed significant differences in their expression patterns. PKIB had two transcripts of 1.9 kb and 1.4 kb. The former transcript was abundant in both placenta and brain and the latter was expressed most abundantly in placenta, highly in brain, heart, liver, pancreas, moderately in kidney, skeletal muscle and colon, and very little in the other eight tissues tested. PKIG was widely expressed as a 1.5-kb transcript with the highest level in heart, hardly detectable in thymus and peripheral blood leucocytes and was moderately expressed in the other tissues, with slightly different levels. However, PKIA was specifically expressed as two transcripts of 3.3 kb and 1.5 kb in heart and skeletal muscle. The distinct expression patterns of the three PKIs suggest that their roles in various tissues are probably different.


Sign in / Sign up

Export Citation Format

Share Document