Review of Discharge Patterns of Single Fibers in the Cat's Auditory Nerve.

1966 ◽  
Vol 11 (9) ◽  
pp. 457-458
1974 ◽  
Vol 70 (3) ◽  
pp. 431-447 ◽  
Author(s):  
Murray B. Sachs ◽  
Eric D. Young ◽  
Richard H. Lewis

2003 ◽  
Vol 89 (6) ◽  
pp. 3097-3113 ◽  
Author(s):  
Jason S. Rothman ◽  
Paul B. Manis

Using kinetic data from three different K+ currents in acutely isolated neurons, a single electrical compartment representing the soma of a ventral cochlear nucleus (VCN) neuron was created. The K+ currents include a fast transient current ( IA), a slow-inactivating low-threshold current ( ILT), and a noninactivating high-threshold current ( IHT). The model also includes a fast-inactivating Na+ current, a hyperpolarization-activated cation current ( Ih), and 1–50 auditory nerve synapses. With this model, the role IA, ILT, and IHT play in shaping the discharge patterns of VCN cells is explored. Simulation results indicate that IHT mainly functions to repolarize the membrane during an action potential, and IA functions to modulate the rate of repetitive firing. ILT is found to be responsible for the phasic discharge pattern observed in Type II cells (bushy cells). However, by adjusting the strength of ILT, both phasic and regular discharge patterns are observed, demonstrating that a critical level of ILT is necessary to produce the Type II response. Simulated Type II cells have a significantly faster membrane time constant in comparison to Type I cells (stellate cells) and are therefore better suited to preserve temporal information in their auditory nerve inputs by acting as precise coincidence detectors and having a short refractory period. Finally, we demonstrate that modulation of Ih, which changes the resting membrane potential, is a more effective means of modulating the activation level of ILT than simply modulating ILT itself. This result may explain why ILT and Ih are often coexpressed throughout the nervous system.


1992 ◽  
Vol 336 (1278) ◽  
pp. 403-406 ◽  

This study investigates a potential mechanism for the processing of acoustic information that is encoded in the spatiotemporal discharge patterns of auditory nerve (AN) fibres. Recent physiological evidence has demonstrated that some low-frequency cells in the anteroventral cochlear nucleus (AVCN) are sensitive to manipulations of the phase spectrum of complex sounds (Carney 1990 b ). These manipulations result in systematic changes in the spatiotemporal discharge patterns across groups of low-frequency an fibres having different characteristic frequencies (CFS). One interpretation of these results is that these neurons in the AVCN receive convergent inputs from AN fibres with different CFS, and that the cells perform a coincidence detection or cross-correlation upon their inputs. This report presents a model that was developed to test this interpretation.


Sign in / Sign up

Export Citation Format

Share Document