Losing a dime with a satisfied mind: Positive affect accounts for age-related differences in sequential decision making

2009 ◽  
Author(s):  
Bettina von Helversen ◽  
Rui Mata
2018 ◽  
Vol 33 (2) ◽  
pp. 297-314 ◽  
Author(s):  
Klara Rydzewska ◽  
Bettina von Helversen ◽  
Małgorzata Kossowska ◽  
Mikołaj Magnuski ◽  
Grzegorz Sedek

2007 ◽  
Author(s):  
Kyler M. Eastman ◽  
Brian J. Stankiewicz ◽  
Alex C. Huk

Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


Sign in / Sign up

Export Citation Format

Share Document