Quantitative Analysis of Clay Mineral Mixtures by X-ray Diffraction

Nature ◽  
1964 ◽  
Vol 204 (4964) ◽  
pp. 1228-1230 ◽  
Author(s):  
A. A. THEISEN ◽  
E. BELLIS
1988 ◽  
Vol 41 (2) ◽  
pp. 323 ◽  
Author(s):  
JC Taylor ◽  
SR Pecover

It is shown that quantitative analysis of zeolite phases in mineral mixtures can be performed using calculated whole-pattern X-ray diffraction profiles and Bragg-Brentano patterns. The method was tested on binary and ternary standard mixtures containing quartz, heulandite, chabazite and stellerite, and gave zeolite weight percentages correct to within a few per cent. Structure analyses of the zeolites were necessary to obtain good calculated profiles. The platy zeolites heulimdite and stellerite had severe preferred orientation problems, which were minimised experimentally by adding Al powder diluent and an epoxy resin, and regrinding. Analyses of field samples are also described.


Clay Minerals ◽  
1981 ◽  
Vol 16 (4) ◽  
pp. 383-393 ◽  
Author(s):  
S. J. Van Der Gaast ◽  
A. J. Vaars

AbstractA method is described for calculating, and then subtracting, the background from X-ray diffraction patterns of oriented clay mineral samples. Ti-Kα radiation is used and, to minimize the absorption of this radiation by air, a vacuum and helium-flushed device has been developed. This device can be used with other X-ray sources, offering a considerable increase of intensity—e.g. Co-Kα radiation is increased by 125%. With the background-eliminated patterns a better semi-quantitative estimate of the composition of clay mineral mixtures is possible. Small differences in composition of two samples can be identified by subtracting one of the background-eliminated patterns from the other. Using this method, peak maxima of smectite-group minerals can also be accurately determined.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 293-298
Author(s):  
Urszula Zagórska ◽  
◽  
Sylwia Kowalska ◽  

The analysis of mineralogical composition by quantitative X-ray diffraction (QXRD) is one of the standard research methods used in hydrocarbon exploration. In order to improve it and to obtain better results, the methodology of quantitative analysis used at Well Logging Department is being periodically (more or less) modified. After the introduction of the improvements, comparative analyses were performed on archival samples. Reflections from an unidentified phase which did not occur in the tested Rotliegend sandstone samples were noticed on X-ray diffractograms of archival samples. Reflections of a mineral called simonkolleite were identified in the X-ray diffraction database. Chemically it is a hydrated zinc chloride of the formula: Zn5Cl2(OH)8 × H2O. Analysis of the composition of samples in which simonkolleite crystallised, indicated that the mineral is being formed in the result of the slow reaction of zinc oxide with halite (NaCl) and water vapour. An attempt was made to determine the influence of the presence of this mineral on the results of the quantitative analysis of mineralogical composition. The above methodology was applied on a group of ten samples. The results of the quantitative analysis conducted for archival samples stored with added zincite standard containing simonkolleite and for new, freshly grinded (without artifact) samples were compared. The comparison of the obtained results showed a slight influence of this mineral on the quantitative composition of the remaining components. The difference between the results usually did not exceed the method error. At the same time a significant difference in the calculated content of the internal standard was noted – on average 1% less in archival than in new samples. This shows that the reaction occurring in the archival samples will affect the evaluation of the quality of the obtained quantitative analysis, at the same time excluding the possibility of determining the rock’s amorphous substance content with the internal standard method.


2008 ◽  
Vol 452 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Qiuguo Xiao ◽  
Ling Huang ◽  
Hui Ma ◽  
Xinhua Zhao

Sign in / Sign up

Export Citation Format

Share Document