scholarly journals Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Qinyi Fu ◽  
Benjamin L. Martin ◽  
David Q. Matus ◽  
Liang Gao
2018 ◽  
Author(s):  
Liang Gao

AbstractTiling light sheet selective plane illumination microscopy (TLS-SPIM) improves 3D imaging ability of SPIM by using a real-time optimized tiling light sheet. However, the imaging speed decreases, and size of the raw image data increases proportionally to the number of tiling positions in TLS-SPIM. The decreased imaging speed and the increased raw data size could cause significant problems when TLS-SPIM is used to image large specimens at high spatial resolution. Here, we present a novel method to solve the problem. Discontinuous light sheets created by scanning coaxial beam arrays synchronized with camera exposures are used for 3D imaging to decrease the number of tiling positions required at each image plane without sacrificing the spatial resolution. We investigate the performance of the method via numerical simulation and discuss the technical details of the method.


2017 ◽  
Author(s):  
Liang Gao

AbstractKeeping the excitation light sheet in focus is critical in selective plane illumination microscopy (SPIM) to ensure its 3D imaging ability. Unfortunately, an effective method that can be used in SPIM on general biological specimens to find the axial position of the excitation light sheet and keep it in focus is barely available. Here, we present a method to solve the problem. We investigate its mechanism and demonstrate its performance on a lattice light sheet microscope.


2019 ◽  
Vol 27 (23) ◽  
pp. 34472 ◽  
Author(s):  
Dongyue Wang ◽  
Yuxiao Jin ◽  
Ruili Feng ◽  
Yanlu Chen ◽  
Liang Gao

2020 ◽  
Author(s):  
Daniel Saska ◽  
Paul Pichler ◽  
Chen Qian ◽  
Chrysia Pegasiou ◽  
Christopher L. Buckley ◽  
...  

AbstractSelective Plane Illumination Microscopy (SPIM) is a fluorescence imaging technique that allows volumetric imaging at high spatio-temporal resolution to monitor neural activity in live organisms such as larval zebrafish. A major challenge in the construction of a custom SPIM microscope is the control and synchronization of the various hardware components. Here we present a control toolset, μSPIM, built around the open-source MicroManager platform that has already been widely adopted for the control of microscopy hardware. Installation of μSPIM is relatively straightforward, involving a single C++ executable and a Java-based extension to Micro-Manager. Imaging protocols are defined through the μSPIM extension to Micro-Manager. The extension then synchronizes the camera shutter with the galvanometer mirrors to create a light-sheet that is scanned in the z-dimension, in synchrony with the imaging objective, to produce volumetric recordings. A key advantage of μSPIM is that a series of calibration procedures optimizes acquisition for a given set-up making it relatively independent of the optical design of the microscope, or the hardware used to build it. Two laser illumination arms can be used while also allowing for the introduction of illumination masks. μSPIM allows imaging of calcium activity throughout the brain of larval zebrafish at rates of 100 planes per second with single cell resolution as well as slower imaging to reconstruct cell populations, for example, in the cleared brains of mice.


Author(s):  
Bo-Jui Chang ◽  
Etai Sapoznik ◽  
Theresa Pohlkamp ◽  
Tamara S. Terrones ◽  
Erik S. Welf ◽  
...  

AbstractWe introduce a cost-effective and easily implemented scan unit which enables any camera-based microscope to perform projection imaging from diverse viewing angles. We demonstrate this capability on Lattice Light-Sheet and Oblique Plane Microscopy by rapidly delivering projection images with an uncompromised lateral resolution and high optical contrast. By imaging the sample from one or multiple perspectives, our method enables visualization of rapid biological processes, real time stereoscopic imaging as well as three-dimensional particle localization throughout a cellular volume from just two images. Furthermore, because our projection imaging technique provides intuitive three-dimensional renderings in real-time, it improves microscope usability, allows users to more-readily optimize instrument performance and identify biological phenomena of interest on-the-fly, while also reducing data overhead by a factor of >100. We leverage our rapid projection method to image cancer cell morpho-dynamics and calcium signaling in cultured neurons, to perform three-dimensional localization of genetically encoded nanoparticles, as well as to image orthogonal views of an embryonic Zebrafish heart simultaneously.


Sign in / Sign up

Export Citation Format

Share Document