Synthesis of a O-propargyl glycoside suitable for protein modification by Cu(I)-catalyzed cycloaddition

2007 ◽  
Author(s):  
Henrik H. Jensen ◽  
Holger B. Kramer ◽  
Benjamin G. David
Keyword(s):  
2018 ◽  
Author(s):  
Zhiwu An ◽  
Fuzhou Gong ◽  
Yan Fu

We have developed PTMiner, a first software tool for automated, confident filtering, localization and annotation of protein post-translational modifications identified by open (mass-tolerant) search of large tandem mass spectrometry datasets. The performance of the software was validated on carefully designed simulation data. <br>


2018 ◽  
Author(s):  
Daniel D. Brauer ◽  
Emily C. Hartman ◽  
Daniel L.V. Bader ◽  
Zoe N. Merz ◽  
Danielle Tullman-Ercek ◽  
...  

<div> <p>Site-specific protein modification is a widely-used strategy to attach drugs, imaging agents, or other useful small molecules to protein carriers. N-terminal modification is particularly useful as a high-yielding, site-selective modification strategy that can be compatible with a wide array of proteins. However, this modification strategy is incompatible with proteins with buried or sterically-hindered N termini, such as virus-like particles like the well-studied MS2 bacteriophage coat protein. To assess VLPs with improved compatibility with these techniques, we generated a targeted library based on the MS2-derived protein cage with N-terminal proline residues followed by three variable positions. We subjected the library to assembly, heat, and chemical selections, and we identified variants that were modified in high yield with no reduction in thermostability. Positive charge adjacent to the native N terminus is surprisingly beneficial for successful extension, and over 50% of the highest performing variants contained positive charge at this position. Taken together, these studies described nonintuitive design rules governing N-terminal extensions and identified successful extensions with high modification potential.</p> </div>


2019 ◽  
Author(s):  
Zijian Guo ◽  
Bruno Oliveira ◽  
Claudio D. Navo ◽  
Pedro M. S. D. Cal ◽  
Francisco Corzana ◽  
...  

<p>Strained alkenes and alkynes are the predominant dienophiles used in inverse electron-demand Diels-Alder (IEDDA) reactions, however, their instability, cross-reactivity and accessibility are problematic. Unstrained dienophiles, although physiologically stable and synthetically accessible, react with tetrazines significantly slower relative to strained variants. Here we report the development of potassium arylethynyltrifluoroborates as unstrained dienophiles for ultrafast, chemically triggered IEDDA reactions. By varying the substituents on the tetrazine (e.g. pyridyl- to benzyl-substituents), cycloaddition rates can vary from nearly spontaneous (<i>t</i><sub>1/2</sub>≈ 9 s) to no reaction with the unstrained alkyne-BF3 dienophile. The reported system was applied to protein modification and enabled mutually orthogonal labelling of two distinct proteins.</p>


2019 ◽  
Author(s):  
Zijian Guo ◽  
Bruno Oliveira ◽  
Claudio D. Navo ◽  
Pedro M. S. D. Cal ◽  
Francisco Corzana ◽  
...  

<p>Strained alkenes and alkynes are the predominant dienophiles used in inverse electron-demand Diels-Alder (IEDDA) reactions, however, their instability, cross-reactivity and accessibility are problematic. Unstrained dienophiles, although physiologically stable and synthetically accessible, react with tetrazines significantly slower relative to strained variants. Here we report the development of potassium arylethynyltrifluoroborates as unstrained dienophiles for ultrafast, chemically triggered IEDDA reactions. By varying the substituents on the tetrazine (e.g. pyridyl- to benzyl-substituents), cycloaddition rates can vary from nearly spontaneous (<i>t</i><sub>1/2</sub>≈ 9 s) to no reaction with the unstrained alkyne-BF3 dienophile. The reported system was applied to protein modification and enabled mutually orthogonal labelling of two distinct proteins.</p>


2020 ◽  
Vol 28 (1) ◽  
pp. 152-168
Author(s):  
Zhi-Xiang Zhou ◽  
Zhong Ren ◽  
Bin-Jie Yan ◽  
Shun-Lin Qu ◽  
Zhi-Han Tang ◽  
...  

: Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document