scholarly journals Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway

Oncogene ◽  
2012 ◽  
Vol 32 (23) ◽  
pp. 2836-2847 ◽  
Author(s):  
N Skalka ◽  
M Caspi ◽  
E Caspi ◽  
Y P Loh ◽  
R Rosin-Arbesfeld
2004 ◽  
Vol 164 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Lorenza Ciani ◽  
Olga Krylova ◽  
Matthew J. Smalley ◽  
Trevor C. Dale ◽  
Patricia C. Salinas

Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.


2013 ◽  
Vol 72 (Suppl 3) ◽  
pp. A807.1-A807
Author(s):  
M. H. van den Bosch ◽  
A. B. Blom ◽  
P. L. van Lent ◽  
H. M. van Beuningen ◽  
F. A. van de Loo ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94343 ◽  
Author(s):  
Xinxin Li ◽  
Cheng Chen ◽  
Fangmei Wang ◽  
Wenhuan Huang ◽  
Zhongheng Liang ◽  
...  

2019 ◽  
Vol 98 ◽  
pp. 246-255 ◽  
Author(s):  
Chu-Chih Hung ◽  
Amy Chaya ◽  
Kai Liu ◽  
Konstantinos Verdelis ◽  
Charles Sfeir

2019 ◽  
Vol 98 (5) ◽  
pp. 580-588 ◽  
Author(s):  
Y. Xiong ◽  
Y. Fang ◽  
Y. Qian ◽  
Y. Liu ◽  
X. Yang ◽  
...  

The Wnt ligands display varied spatiotemporal expression in the epithelium and mesenchyme in the developing tooth. Thus far, the actions of these differentially expressed Wnt ligands on tooth development are not clear. Shh expression specifies the odontogenic epithelium during initiation and is consistently restricted to the dental epithelium during tooth development. In this study, we inactivate Wntless ( Wls), the key regulator for Wnt trafficking, by Shh-Cre to investigate how the Wnt ligands produced in the dental epithelium lineage act on tooth development. We find that conditional knockout of Wls by Shh-Cre leads to defective ameloblast and odontoblast differentiation. WlsShh-Cre teeth display reduced canonical Wnt signaling activity in the inner enamel epithelium and the underlying mesenchyme at the early bell stage, as exhibited by target gene expression and BAT-gal staining. The expression of Wnt5a and Wnt10b is not changed in WlsShh-Cre teeth. By contrast, Wnt10a expression is significantly increased in response to epithelial Wls deficiency. In addition, the expression of Hedgehog signaling pathway components Shh, Gli1, and Patched1 was greatly decreased in WlsShh-Cre teeth. Epithelial Wls loss of function in Shh lineage also leads to aberrant cell proliferation in dental epithelium and mesenchyme at embryonic day 16.5; however, the cell apoptosis is unaffected. Moreover, we find that Decorin and Col1a1, the key markers for odontoblast differentiation that are downregulated in WlsShh-Cre teeth, act as direct downstream targets of the canonical Wnt signaling pathway by chromatin immunoprecipitation analysis. Additionally, Decorin and Col1a1 expression can be increased by lithium chloride (LiCl) treatment in the in vitro tooth explants. Taken together, our results suggest that the spatial expression of Wnt ligands within the dental epithelial lineage regulates the differentiation of tooth structures in later stages.


Sign in / Sign up

Export Citation Format

Share Document