Early spectral EEG in preterm infants correlates with neurocognitive outcomes in late childhood
Abstract Background Evidence regarding the predictive value of early amplitude-integrated electroencephalography (aEEG)/EEG on neurodevelopmental outcomes at school age and beyond is lacking. We aimed to investigate whether there is an association between early postnatal EEG and neurocognitive outcomes in late childhood. Methods This study is an observational prospective cohort study of premature infants with a gestational age <28 weeks. The total absolute band powers (tABP) of the delta, theta, alpha, and beta bands were analyzed from EEG recordings during the first three days of life. At 10–12 years of age, neurocognitive outcomes were assessed using the Wechsler Intelligence Scale for Children 4th edition (WISC-IV), Vineland adaptive behavior scales 2nd edition, and Behavior Rating Inventory of Executive Function (BRIEF). The mean differences in tABP were assessed for individuals with normal versus unfavorable neurocognitive scores. Results Twenty-two infants were included. tABP values in all four frequency bands were significantly lower in infants with unfavorable results in the main composite scores (full intelligence quotient, adaptive behavior composite score, and global executive composite score) on all three tests (p < 0.05). Conclusions Early postnatal EEG has the potential to assist in predicting cognitive outcomes at 10–12 years of age in extremely premature infants <28 weeks’ gestation. Impact Evidence regarding the value of early postnatal EEG in long-term prognostication in preterm infants is limited. Our study suggests that early EEG spectral analysis correlates with neurocognitive outcomes in late childhood in extremely preterm infants. Early identification of infants at-risk of later impairment is important to initiate early and targeted follow-up and intervention.