scholarly journals The biological applications of DNA nanomaterials: current challenges and future directions

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenjuan Ma ◽  
Yuxi Zhan ◽  
Yuxin Zhang ◽  
Chenchen Mao ◽  
Xueping Xie ◽  
...  

AbstractDNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson–Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2047
Author(s):  
Xuehui Yan ◽  
Shujing Huang ◽  
Yong Wang ◽  
Yuanyuan Tang ◽  
Ye Tian

Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each. We also review the application of DNA self-assembly and propose perspectives in this field.


2010 ◽  
Vol 14 (5) ◽  
pp. 597-607 ◽  
Author(s):  
Pik Kwan Lo ◽  
Kimberly L Metera ◽  
Hanadi F Sleiman

Author(s):  
Song J

Plasmonic assemblies of gold nanoparticles (AuNPs) triggered by DNA exhibited excellent biocompatibility and specific-targeting ability. Moreover, the integration of AuNPs and DNA allows the DNA scaffolds exhibit greater chemical stability and optical plasmonic properties. In this mini review, we summarized the development of DNA nanotechnology, especially DNA framework and DNA origami that were employed to fabricate two-dimensional and three-dimensional (3D) Au nanoassembled nanostructures.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 944 ◽  
Author(s):  
Krzysztof Tadyszak ◽  
Jacek Wychowaniec ◽  
Jagoda Litowczenko

Graphene and graphene oxide (GO) structures and their reduced forms, e.g., GO paper and partially or fully reduced three-dimensional (3D) aerogels, are at the forefront of materials design for extensive biomedical applications that allow for the proliferation and differentiation/maturation of cells, drug delivery, and anticancer therapies. Various viability tests that have been conducted in vitro on human cells and in vivo on mice reveal very promising results, which make graphene-based materials suitable for real-life applications. In this review, we will give an overview of the latest studies that utilize graphene-based structures and their composites in biological applications and show how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and synthetically designed graphene-based nanomaterials.


2018 ◽  
Author(s):  
Ryan A. Brady ◽  
Nicholas J. Brooks ◽  
Vito Foderà ◽  
Pietro Cicuta ◽  
Lorenzo Di Michele

<div> <div> <div> <p>The reliable preparation of functional, ordered, nanostructured frameworks would be a game changer for many emerging technologies, from energy storage to nanomedicine. Underpinned by the excellent molecular recognition of nucleic acids, along with their facile synthesis and breadth of available functionalizations, DNA Nanotechnology is widely acknowledged as a prime route for the rational design of nanostructured materials. Yet, the preparation of crystalline DNA frameworks with programmable structure and functionality remains a challenge. Here we demonstrate the potential of simple amphiphilic DNA motifs, dubbed C-stars, as a versatile platform for the design of programmable DNA crystals. In contrast to all-DNA materials, in which structure depends on the precise molecular details of individual building blocks, the self-assembly of C-stars is controlled uniquely by their topology and symmetry. Exploiting this robust self-assembly principle we design a range of topologically identical, but structurally and chemically distinct C-stars that following a one-pot reaction self- assemble into highly porous, functional, crystalline frameworks. Simple design variations allow us to fine-tune the lattice parameter and thus control the partitioning of macromolecules within the frameworks, embed responsive mo- tifs that can induce isothermal disassembly, and include chemical moieties to capture target proteins specifically and reversibly.</p></div> </div> </div>


2018 ◽  
Author(s):  
Ryan A. Brady ◽  
Nicholas J. Brooks ◽  
Vito Foderà ◽  
Pietro Cicuta ◽  
Lorenzo Di Michele

<div> <div> <div> <p>The reliable preparation of functional, ordered, nanostructured frameworks would be a game changer for many emerging technologies, from energy storage to nanomedicine. Underpinned by the excellent molecular recognition of nucleic acids, along with their facile synthesis and breadth of available functionalizations, DNA Nanotechnology is widely acknowledged as a prime route for the rational design of nanostructured materials. Yet, the preparation of crystalline DNA frameworks with programmable structure and functionality remains a challenge. Here we demonstrate the potential of simple amphiphilic DNA motifs, dubbed C-stars, as a versatile platform for the design of programmable DNA crystals. In contrast to all-DNA materials, in which structure depends on the precise molecular details of individual building blocks, the self-assembly of C-stars is controlled uniquely by their topology and symmetry. Exploiting this robust self-assembly principle we design a range of topologically identical, but structurally and chemically distinct C-stars that following a one-pot reaction self- assemble into highly porous, functional, crystalline frameworks. Simple design variations allow us to fine-tune the lattice parameter and thus control the partitioning of macromolecules within the frameworks, embed responsive mo- tifs that can induce isothermal disassembly, and include chemical moieties to capture target proteins specifically and reversibly.</p></div> </div> </div>


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2019 ◽  
Vol 24 (32) ◽  
pp. 3739-3757 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Sanjeev K. Singh

Nucleic acid is the key unit and a predominant genetic material for interpreting the fundamental basis of genetic information in an organism and now it is used for the evolution of a novel group of therapeutics. To identify the potential impact on the biological science, it receives high recognition in therapeutic applications. Due to its selective recognition of molecular targets and pathways, DNA significantly imparts tremendous specificity of action. Examining the properties of DNA holds numerous advantages in assembly, interconnects, computational elements, along with potential applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and programmable/autonomous molecular machines. The interaction of low molecular weight, small molecules with DNA is a significant feature in pharmacology. Based on the mode of binding mechanisms, small molecules are categorized as intercalators and groove binders having a significant role in target-based drug development. The understanding mechanism of drug-DNA interaction plays an important role in the development of novel drug molecules with more effective and lesser side effects. This article attempts to outline those interactions of drug-DNA with both experimental and computational advances, including ultraviolet (UV) -visible spectroscopy, fluorescent spectroscopy, circular dichroism, nuclear magnetic resonance (NMR), molecular docking and dynamics, and quantum mechanical applications.


Sign in / Sign up

Export Citation Format

Share Document