scholarly journals Potent and specific MTH1 inhibitors targeting gastric cancer

2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Wenjuan Zhou ◽  
Liying Ma ◽  
Jing Yang ◽  
Hui Qiao ◽  
Lingyu Li ◽  
...  

Abstract Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.

Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2010 ◽  
Vol 29 (8) ◽  
pp. 752-760 ◽  
Author(s):  
Ye Zhao ◽  
Jian-Sheng Li ◽  
Ming-Zhou Guo ◽  
Bai-Sui Feng ◽  
Jin-Ping Zhang

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Yongping Liu ◽  
Yang Ling ◽  
Wenjing Hu ◽  
Li Xie ◽  
Lixia Yu ◽  
...  

The herb medicine formula “Chong Lou Fu Fang” (CLFF) has efficacy in inhibiting the proliferation of human gastric cancerin vitroandin vivo. To explore the potentially useful combination of CLFF with chemotherapeutic agents commonly used in gastric cancer therapy, we assess the interaction between CLFF and these chemotherapeutic agents in both SGC-7901 cell lines and BGC-823 cell lines using a median effect analysis and apoptosis analysis, and we also investigate the influence of CLFF on chemotherapeutic agent-associated gene expression. The synergistic analysis indicated that CLFF had a synergistic effect on the cytotoxicity of 5-fluorouracil (5-FU) in a relative broad dose inhibition range (20–95% fraction affected in SGC-7901cell lines and 5–65% fraction affected in BGC-823 cell lines), while the synergistic interaction between CLFF and oxaliplatin or docetaxel only existed in a low dose inhibition range (≤50% fraction affected in both cell lines). Combination of CLFF and chemotherapeutic agents could also induce apoptosis in a synergistic manner. After 24 h, CLFF alone or CLFF combination with chemotherapeutic agents could significantly suppress the levels of expression of chemotherapeutic agent resistance related genes in gastric cancer cells. Our findings indicate that there are useful synergistic interactions between CLFF and chemotherapeutic agents in gastric cancer cells, and the possible mechanisms might be partially due to the down-regulation of chemotherapeutic agent resistance related genes and the synergistic apoptotic effect.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2339
Author(s):  
Maria Maddalena Laterza ◽  
Vincenza Ciaramella ◽  
Bianca Arianna Facchini ◽  
Elisena Franzese ◽  
Carmela Liguori ◽  
...  

The anti-HER2 monoclonal antibody trastuzumab is a key drug for the treatment of HER2-positive gastric cancer (GC); however, its activity is often limited by the onset of resistance and mechanisms of resistance are still poorly understood. Several targeted agents showed synergistic activity by concomitant use with trastuzumab in vitro and are under clinical investigation. The aim of this study was to assess the antitumor activity of duligotuzumab, an anti HER3/EGFR antibody or ipatasertib, an AKT inhibitor, combined with trastuzumab in a panel of HER2-positive human gastric cancer cells (GCC), and the efficacy of such combinations in HER2-resistant cells. We have assessed the efficacy of duligotuzumab or ipatasertib and trastuzumab in combination, analyzing proliferation, migration and apoptosis and downstream intracellular signaling in vitro on human HER2-positive GCC (NCI-N87, OE33, OE19) and in negative HER2 GCC (MKN28). We observed a reduction of proliferation, migration and apoptotic rate in HER2-positive OE33, OE19 and N87 cell lines with the combination of duligotuzumab or ipatasertib plus trastuzumab. In particular, in OE33 and OE19 cell lines, the same combined treatment inhibited the activation of proteins downstream of HER2, HER3, AKT and MAPK pathways. Targeting both HER2 and HER3, or HER2 and AKT, results in an improved antitumor effect on HER2-positive GCC.


2021 ◽  

Background and objective: To assess the expression of Nuclear receptor binding SET domain protein 1 (NSD1) in human gastric cancer tissues and cells and investigate its possible role in gastric cancer. Methods: TCGA database was used to assess the expression levels of NSD1 in human gastric cancer tissues. Immunoblot assays were performed to detect NSD1 expression levels in gastric cancer cell lines. MTT and colony formation assays were conduced to detect its role in the survival of gastric cancer cells. Wound closure and transwell were performed to investigate the effects of NSD1 on the motility of gastric cancer cells. Immunoblot assays were also conducted to confirm its effects on WNT10B/β-catenin pathway. Results: We found the high expression levels of NSD1 in human gastric cancer tissues and cell lines. NSD1 depletion suppressed the survival and motility of gastric cancer cells. Additionally, we revealed NSD1 activated the WNT10B/β-catenin pathway, therefore promoted gastric cancer progression. Conclusion: We revealed the high NSD1 expression in gastric cancer tissues and cells, and thought NSD1 could serve as a promising gastric cancer target.


Author(s):  
Jifu Song ◽  
Zhibin Guan ◽  
Maojiang Li ◽  
Sha Sha ◽  
Chao Song ◽  
...  

MicroRNAs (miRNAs) have emerged as pivotal regulators of the development and progression of gastric cancer. Studies have shown that miR-154 is a novel cancer-associated miRNA involved in various cancers. However, the role of miR-154 in gastric cancer remains unknown. Here we aimed to investigate the biological function and the potential molecular mechanism of miR-154 in gastric cancer. We found that miR-154 was significantly downregulated in gastric cancer tissues and cell lines. The overexpression of miR-154 significantly repressed the growth and invasion of gastric cancer cells. Bioinformatics analysis and Dual-Luciferase Reporter Assay data showed that miR-154 directly targeted the 3′-untranslated region of Dishevelled‐Axin domain containing 1 (DIXDC1). Real-time quantitative polymerase chain reaction and Western blot analyses showed that miR-154 overexpression inhibited DIXDC1 expression. An inverse correlation of miR-154 and DIXDC1 was also demonstrated in gastric cancer specimens. Overexpression of miR-154 also significantly suppressed the activation of WNT signaling. Moreover, restoration of DIXDC1 expression significantly reversed the inhibitory effect of miR-154 overexpression on the cell proliferation, invasion, and WNT signaling in gastric cancer cells. Overall, these results suggest that miR-154 inhibits gastric cancer cell growth and invasion by targeting DIXDC1 and could serve as a potential therapeutic target for the treatment of gastric cancer.


2021 ◽  
pp. 114323
Author(s):  
Zhe Wang ◽  
Jingwen Xu ◽  
Yihai Wang ◽  
Limin Xiang ◽  
Xiangjiu He

2016 ◽  
Vol 40 (7) ◽  
pp. 770-778 ◽  
Author(s):  
Hao Nie ◽  
Yu Wang ◽  
Yong Qin ◽  
Xing-Guo Gong

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Qun Ren ◽  
Qi Li ◽  
Yang Zhang

Objective. Gastric cancer, one of the most common malignant tumors worldwide, arises from the gastric mucosal epithelium and severely affects patient health and quality of life. Luteolin (LUT) is a flavonoid found in vegetables and fruits with diverse functions. A large number of studies have confirmed that LUT has an antitumor effect. Therefore, this study is aimed at verifying whether LUT can exert antitumor effects in synergy with oxaliplatin (OXA). As such, we examined the effects of LUT, OXA, and their coadministration in a gastric adenocarcinoma cell line (SGC-7901). We used the MTT assay to quantify the proliferation of SGC-7901 cells, flow cytometry to detect the cell cycle and apoptosis, ELISA to detect the expression of cell-cycle-related proteins, and western blot to detect the expression of related apoptotic factors. The results of this study show that the combination of LUT and OXA inhibited SGC-7901 cell proliferation and induced apoptosis by altering cell-cycle proportions. In addition, the combination also activated Cyt c/caspase signaling in SGC-7901 cells. In summary, LUT synergy with OXA inhibited the proliferation of gastric cancer cells in vitro. The present study also elucidated the mechanism by which LUT potentiated the sensitivity of SGC-7901 cells to OXA through the Cyt c/caspase pathway.


Sign in / Sign up

Export Citation Format

Share Document