scholarly journals Oncogenic microRNA-181d binding to OGT contributes to resistance of ovarian cancer cells to cisplatin

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Huang ◽  
Ling Chen ◽  
Kean Zhu ◽  
Donglian Wang

AbstractOvarian cancer (OC), a common gynecological cancer, is characterized by a high malignant potential. MicroRNAs (miRNAs or miRs) have been associated with the chemo- or radiotherapeutic resistance of human malignancies. Herein, the current study set out to explore the regulatory mechanism of miR-181d involved in the cisplatin (DDP) resistance of OC cells. Firstly, in-situ hybridization method was performed to identify miR-181d expression in ovarian tissues of DDP-resistant or DDP-sensitive patients. In addition, miR-181d expression in A2780 cells and A2780/DDP cell lines was determined by RT-qPCR. Gain- and loss-of-function experiments were then performed to characterize the effect of miR-181d on OC cell behaviors. We probed the miR-181d affinity to OGT, as well as the downstream glycosylation of KEAP1 and ubiquitination of NRF2. Further, in vivo experiments were performed to define the role of miR-181d in tumor resistance to DDP. miR-181d was highly expressed in the ovarian tissues of DDP-resistant patients and the A2780/DDP cell line. Ectopic expression of miR-181d augmented DDP resistance in OC cells. In addition, miR-181d was found to target the 3′UTR of OGT mRNA, and negatively regulate the OGT expression. Mechanistic results indicated that OGT repressed NRF2 expression through glycosylation of KEAP1, thereby inhibiting the DDP resistance of OC cells. Furthermore, miR-181d negatively orchestrated the OGT/KEAP1/NRF2 axis to enhance the OC resistance to DDP in vivo. Overall, these findings suggest that miR-181d-mediated OGT inhibition restricts the glycosylation of KEAP1, and then reduces the ubiquitination and degradation of NRF2, leading to DDP resistance of OC. This study provides new insights for prevention and control of OC.

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1760 ◽  
Author(s):  
Michy ◽  
Massias ◽  
Bernard ◽  
Vanwonterghem ◽  
Henry ◽  
...  

Advanced ovarian cancer is the most lethal gynecological cancer, with a high rate of chemoresistance and relapse. Photodynamic therapy offers new prospects for ovarian cancer treatment, but current photosensitizers lack tumor specificity, resulting in low efficacy and significant side-effects. In the present work, the clinically approved photosensitizer verteporfin was encapsulated within nanostructured lipid carriers (NLC) for targeted photodynamic therapy of ovarian cancer. Cellular uptake and phototoxicity of free verteporfin and NLC-verteporfin were studied in vitro in human ovarian cancer cell lines cultured in 2D and 3D-spheroids, and biodistribution and photodynamic therapy were evaluated in vivo in mice. Both molecules were internalized in ovarian cancer cells and strongly inhibited tumor cells viability when exposed to laser light only. In vivo biodistribution and pharmacokinetic studies evidenced a long circulation time of NLC associated with efficient tumor uptake. Administration of 2 mg.kg−1 free verteporfin induced severe phototoxic adverse effects leading to the death of 5 out of 8 mice. In contrast, laser light exposure of tumors after intravenous administration of NLC-verteporfin (8 mg.kg−1) significantly inhibited tumor growth without visible toxicity. NLC-verteporfin thus led to efficient verteporfin vectorization to the tumor site and protection from side-effects, providing promising therapeutic prospects for photodynamic therapy of cancer.


2020 ◽  
Author(s):  
Zhuo Wang ◽  
Ping Yin ◽  
Yu Sun ◽  
Lei Na ◽  
Jian Gao ◽  
...  

Abstract Background: High-grade serous ovarian cancer (HGSOC) is lethal mainly due to extensive metastasis. Cancer cell stem-like properties are responsible for HGSOC metastasis. LGR4, a G-protein-coupled receptor, is involved in the maintenance of stem cell self-renewal and activity in some human organs. Methods: TCGA and CCLE database was interrogated for gene mRNA analysis in ovarian cancer tissues and cell lines. The interactions between LGR4 and ELF3 were validated through dual-luciferase reporter assays, Chip assays and Co-IP assays. Gain- and loss-of functions of LGR4, ELF3, FZD5 and WNT7B were performed to identify their roles in the behaviors of ovarian cancer cells. Flowcytometry analysis and tumorisphere formation assays were performed to identified their stem-like properties. In vivo experiments were performed as well.Results: LGR4 was shown to be overexpressed in HGSOCs and maintain the epithelial phenotype of HGSOC cells. LGR4 knockdown suppressed POU5F1, SOX2, PROM1 (CD133) and ALDH1A2 expression. Furthermore, LGR4 knockdown reduced CD133+ and ALDH+ subpopulations and impaired tumorisphere formation. To the contrary, LGR4 overexpression enhanced POU5F1 and SOX2 expression and tumorisphere formation capacity. LGR4 knockdown inhibited HGSOC cell growth and peritoneal seeding in xenograft models. Mechanistically, LGR4 and ELF3, an epithelium-specific transcription factor, formed a reciprocal regulatory loop, which was positively modulated by WNT7B/FZD5 pair. Consistently, knockdown of ELF3, WNT7B, and FZD5, respectively, disrupted HGSOC cell epithelial phenotype and stem-like properties. Conclusion: Together, these data demonstrate that WNT7B/FZD5-LGR4/ELF3 axis maintains HGSOC cell epithelial phenotype and stem-like traits; targeting this axis may prevent HGSOC metastasis.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3626
Author(s):  
Sun-Ae Park ◽  
Lee Kyung Kim ◽  
Young Tae Kim ◽  
Tae-Hwe Heo ◽  
Hee Jung Kim

(1) Background: LncRNAs could be a promising biomarker to predict the prognosis of various cancers. The significance of E2F4antisense lncRNA remains unclear in cancer. In this study, we examined the expression level of E2F4as in the serum of ovarian cancer patients and the functional role of E2F4as. (2) Methods: Serum samples were obtained from 108 OC patients and 32 normal patients to measure the expression of E2F4as in the serum. Ovarian cancer cells were used to investigate the role of E2F4as in cell proliferation, invasion, migration and apoptosis, and the expression of E2F4as was knocked down using RNA interference. In addition, E2F4as knockdown cell lines were used in in vivo experiments. (3) Results: The expression of E2F4as was significantly higher in the serum of OC patients than in that of control patients (p < 0.05). The knockdown of E2F4as in ovarian cancer cells led to a decrease in cell proliferation, invasion and migration and an increase in apoptosis. E2F4as knockdown also reduced the expression of epithelium–mesenchymal metastasis (EMT) genes. (4) Conclusion: These findings highlight the clinical significance of E2F4as in predicting the prognosis of OC patients and suggest its potential in promoting tumour aggressiveness by the regulation of EMT-related mechanisms.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shujun Cao ◽  
Na Li ◽  
Xihong Liao

Abstract Background Ovarian cancer is the leading lethal gynecological cancer and is generally diagnosed during late-stage presentation. In addition, patients with ovarian cancer still face a low 5-year survival rate. Thus, innovative molecular targeting agents are required to overcome this disease. The present study aimed to explore the function of miR-362-3p and the underlying molecular mechanisms influencing ovarian cancer progression. Methods The expression levels of miR-362-3p were determined using qRT-PCR. Gain-of-function and loss-of-function methods were used to detect the effects of miR-362-3p on cell proliferation, cell migration, and tumor metastasis in ovarian cancer. A luciferase reporter assay was performed to confirm the potential target of miR-362-3p, and a rescue experiment was employed to verify the effect of miR-362-3p on ovarian cancer by regulating its target gene. Results miR-362-3p was significantly downregulated in ovarian cancer tissues and cell lines. In vitro, our data showed that miR-362-3p suppressed cell proliferation and migration. In vivo, miR-362-3p inhibited ovarian cancer growth and metastasis. Mechanistically, SERBP1 was identified as a direct target and functional effector of miR-362-3p in ovarian cancer. Moreover, SERBP1 overexpression rescued the biological function of miR-362-3p. Conclusions Our data reveal that miR-362-3p has an inhibitory effect on ovarian cancer. miR-362-3p inhibits the development and progression of ovarian cancer by directly binding its target gene SERBP1.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Li Geng ◽  
Zhongqiu Wang ◽  
Yongju Tian

Abstract Background Ovarian cancer is a common gynecological malignant disease in women. Our work aimed to study the specific functions of ZNF252P antisense RNA 1 (ZNF252P-AS1) in ovarian cancer. Methods ZNF252P-AS1, miR-324-3p, and lymphocyte antigen 6 family member K (LY6K) expression were analyzed by bioinformatics tools in ovarian cancer tissues and was quantified by qRT-PCR in ovarian cancer cells. The effect of ZNF252P-AS1 knockdown, miR-324-3p suppression, and LY6K over-expression on apoptosis, cell viability, invasion, migration, and epithelial to mesenchymal transition (EMT) was determined in vitro by using colony formation and EdU assays, flow cytometry, transwell assay, and Western blot. The interactions between ZNF252P-AS1 and miR-324-3p and between miR-324-3p and LY6K were validated by luciferase assays. The effects of restraining ZNF252P-AS1 in vivo were studied using BALB/c male nude mice. Results ZNF252P-AS1 and LY6K levels were up-regulated, while miR-324-3p was declined in ovarian cancer tissues and cells. ZNF252P-AS1 knockdown reduced ovarian cancer cell proliferation, invasion, migration, and EMT, whereas promoted its apoptosis. Besides, ZNF252P-AS1 interacted with miR-324-3p and reversely regulated its level, and miR-324-3p was directly bound to LY6K and negatively regulated its expression. Moreover, ZNF252P-AS1 knockdown reversed the effect of miR-324-3p on cancer cell apoptosis, growth, migration, invasion, and EMT. Similar results were discovered in the rescue experiments between miR-324-3p and LY6K. Additionally, mouse models in vivo experiments further validated that ZNF252P-AS1 knockdown distinctly inhibited tumor growth. Conclusion ZNF252P-AS1 mediated miR-324-3p/LY6K signaling to facilitate progression of ovarian cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Li ◽  
Caixia Wang ◽  
Shuang Wang ◽  
Yuexin Hu ◽  
Shan Jin ◽  
...  

Abstract Background Malignant tumours of the female reproductive system threaten the lives and health of women worldwide, with ovarian cancer having the highest mortality rate. Based on previous work, this study analysed the expression and role of YWHAE in ovarian epithelial tumours. Methods The interaction between YWHAE and HE4 was evaluated via immunoprecipitation, western blot analysis, and cellular immunofluorescence. Immunohistochemistry was used to address the relationship between YWHAE expression, clinicopathological parameters, and patient prognosis. Changes in cell invasion, epithelial–mesenchymal transition, migration, proliferation, apoptosis, and cell cycle before and after differential expression of YWHAE were also explored in ovarian cancer cell lines and via in vivo experiments. Results YWHAE was found to interact with HE4, and its expression was positively correlated with HE4 expression. Moreover, YWHAE upregulation was associated with advanced stages of ovarian cancer and poor patient prognosis. In addition, YWHAE enhanced invasion, migration, and proliferation, but inhibited the apoptosis of ovarian cancer cells. These biological effects were found to be mediated by the AKT and MAPK signalling pathways. Conclusions Altogether, this study demonstrates that YWHAE is substantially upregulated in ovarian cancer tissues, representing a risk factor for the prognosis of ovarian cancer that is positively correlated with HE4 expression. Furthermore, YWHAE and its downstream pathways may represent new therapeutic targets for ovarian cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 262
Author(s):  
Mikella Robinson ◽  
Samuel F. Gilbert ◽  
Jennifer A. Waters ◽  
Omar Lujano-Olazaba ◽  
Jacqueline Lara ◽  
...  

The identification of tumor-initiating cells (TICs) has traditionally relied on surface markers including CD133, CD44, CD117, and the aldehyde dehydrogenase (ALDH) enzyme, which have diverse expression across samples. A more reliable indication of TICs may include the expression of embryonic transcription factors that support long-term self-renewal, multipotency, and quiescence. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and may indicate TICs with high relapse potential. We evaluated a panel of eight ovarian cancer cell lines grown in standard 2-D culture or in spheroid-enriching 3-D culture, and correlated expression with growth characteristics, TIC marker expression, and chemotherapy resistance. RNA-sequencing showed that cell cycle regulation pathways involving SOX2 were elevated in 3-D conditions. HGSOC lines had longer doubling-times, greater chemoresistance, and significantly increased expression of SOX2, OCT4, and NANOG in 3-D conditions. CD117+ or ALDH+/CD133+ cells had increased SOX2, OCT4, and NANOG expression. Limiting dilution in in vivo experiments implicated SOX2, but not OCT4 or NANOG, with early tumor-initiation. An analysis of patient data suggested a stronger role for SOX2, relative to OCT4 or NANOG, for tumor relapse potential. Overall, our findings suggest that SOX2 may be a more consistent indicator of ovarian TICs that contribute to tumor repopulation following chemotherapy. Future studies evaluating SOX2 in TIC biology will increase our understanding of the mechanisms that drive ovarian cancer relapse.


2020 ◽  
pp. 155335062097800
Author(s):  
Ian A. Makey ◽  
Nitin A. Das ◽  
Samuel Jacob ◽  
Magdy M. El-Sayed Ahmed ◽  
Colleen M. Makey ◽  
...  

Background. Retained hemothorax (RH) is a common problem in cardiothoracic and trauma surgery. We aimed to determine the optimum agitation technique to enhance thrombus dissolution and drainage and to apply the technique to a porcine-retained hemothorax. Methods. Three agitation techniques were tested: flush irrigation, ultrasound, and vibration. We used the techniques in a benchtop model with tissue plasminogen activator (tPA) and pig hemothorax with tPA. We used the most promising technique vibration in a pig hemothorax without tPA. Statistics. We used 2-sample t tests for each comparison and Cohen d tests to calculate effect size (ES). Results. In the benchtop model, mean drainages in the agitation group and control group and the ES were flush irrigation, 42%, 28%, and 2.91 ( P = .10); ultrasound, 35%, 27%, and .76 ( P = .30); and vibration, 28%, 19%, and 1.14 ( P = .04). In the pig hemothorax with tPA, mean drainages and the ES of each agitation technique compared with control (58%) were flush irrigation, 80% and 1.14 ( P = .37); ultrasound, 80% and 2.11 ( P = .17); and vibration, 95% and 3.98 ( P = .06). In the pig hemothorax model without tPA, mean drainages of the vibration technique and control group were 50% and 43% (ES = .29; P = .65). Discussion. In vitro studies suggested flush irrigation had the greatest effect, whereas only vibration was significantly different vs the respective controls. In vivo with tPA, vibration showed promising but not statistically significant results. Results of in vivo experiments without tPA were negative. Conclusion. Agitation techniques, in combination with tPA, may enhance drainage of hemothorax.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michael DeLong ◽  
Mauricio Gil-Silva ◽  
Veronica Minsu Hong ◽  
Olivia Babyok ◽  
Benedict J. Kolber

Abstract Background The regulation and control of pressure stimuli is useful for many studies of pain and nociception especially those in the visceral pain field. In many in vivo experiments, distinct air and liquid stimuli at varying pressures are delivered to hollow organs such as the bladder, vagina, and colon. These stimuli are coupled with behavioral, molecular, or physiological read-outs of the response to the stimulus. Care must be taken to deliver precise timed stimuli during experimentation. For example, stimuli signals can be used online to precisely time-lock the stimulus with a physiological output. Such precision requires the development of specialized hardware to control the stimulus (e.g., air) while providing a precise read-out of pressure and stimulus signal markers. Methods In this study, we designed a timed pressure regulator [termed visceral pressure stimulator (VPS)] to control air flow, measure pressure (in mmHg), and send stimuli markers to online software. The device was built using a simple circuit and primarily off-the-shelf parts. A separate custom inline analog-to-digital pressure converter was used to validate the real pressure output of the VPS. Results Using commercial physiological software (Spike2, CED), we were able to measure mouse bladder pressure continuously during delivery of unique air stimulus trials in a mouse while simultaneously recording an electromyogram (EMG) of the overlying abdominal muscles. Conclusions This device will be useful for those who need to (1) deliver distinct pressure stimuli while (2) measuring the pressure in real-time and (3) monitoring stimulus on–off using physiological software.


Author(s):  
Conghui Wang ◽  
Jiaying Wang ◽  
Xiameng Shen ◽  
Mingyue Li ◽  
Yongfang Yue ◽  
...  

Abstract Background Metastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis. Methods EVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo. Results We found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo. Conclusions Our findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document