scholarly journals Nanonet: Low-temperature-processed tellurium nanowire network for scalable p-type field-effect transistors and a highly sensitive phototransistor array

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 901
Author(s):  
Gizem Acar ◽  
Muhammad Javaid Iqbal ◽  
Mujeeb Ullah Chaudhry

Organic light-emitting field-effect transistors (LEFETs) provide the possibility of simplifying the display pixilation design as they integrate the drive-transistor and the light emission in a single architecture. However, in p-type LEFETs, simultaneously achieving higher external quantum efficiency (EQE) at higher brightness, larger and stable emission area, and high switching speed are the limiting factors for to realise their applications. Herein, we present a p-type polymer heterostructure-based LEFET architecture with electron and hole injection interlayers to improve the charge injection into the light-emitting layer, which leads to better recombination. This device structure provides access to hole mobility of ~2.1 cm2 V−1 s−1 and EQE of 1.6% at a luminance of 2600 cd m−2. Most importantly, we observed a large area emission under the entire drain electrode, which was spatially stable (emission area is not dependent on the gate voltage and current density). These results show an important advancement in polymer-based LEFET technology toward realizing new digital display applications.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Author(s):  
Zichao Cheng ◽  
Xiufeng Song ◽  
Lianfu Jiang ◽  
Lude Wang ◽  
Jiamin Sun ◽  
...  

GaSb nanowires integrated on a silicon-based substrate are of great significance for p-type field-effect transistors. In particular, due to the continued miniaturization of circuits, such as avoiding complex dielectric engineering,...


2015 ◽  
Vol 6 (32) ◽  
pp. 5884-5890 ◽  
Author(s):  
Shengxia Li ◽  
Linrun Feng ◽  
Jiaqing Zhao ◽  
Xiaojun Guo ◽  
Qing Zhang

Thermal cross-linking the bi-functional polymer thin-films at low temperature for gate dielectric application in solution processed organic field-effect transistors.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3361
Author(s):  
Kyung-Tae Kim ◽  
Keon Woo Lee ◽  
Sanghee Moon ◽  
Joon Bee Park ◽  
Chan-Yong Park ◽  
...  

Semiconducting single-walled carbon nanotubes (s-SWCNTs) have gathered significant interest in various emerging electronics due to their outstanding electrical and mechanical properties. Although large-area and low-cost fabrication of s-SWCNT field effect transistors (FETs) can be easily achieved via solution processing, the electrical performance of the solution-based s-SWCNT FETs is often limited by the charge transport in the s-SWCNT networks and interface between the s-SWCNT and the dielectrics depending on both s-SWCNT solution synthesis and device architecture. Here, we investigate the surface and interfacial electro-chemical behaviors of s-SWCNTs. In addition, we propose a cost-effective and straightforward process capable of minimizing polymers bound to s-SWCNT surfaces acting as an interfering element for the charge carrier transport via a heat-assisted purification (HAP). With the HAP treated s-SWCNTs, we introduced conformal dielectric configuration for s-SWCNT FETs, which are explored by a carefully designed wide array of electrical and chemical characterizations with finite-element analysis (FEA) computer simulation. For more favorable gate-field-induced surface and interfacial behaviors of s-SWCNT, we implemented conformally gated highly capacitive s-SWCNT FETs with ion-gel dielectrics, demonstrating field-effect mobility of ~8.19 cm2/V⋅s and on/off current ratio of ~105 along with negligible hysteresis.


1997 ◽  
Vol 483 ◽  
Author(s):  
Hui Jin Looi ◽  
Lisa Ys Pang ◽  
Richard B. Jackman

AbstractEarly predictions that diamond would be a suitable material for high performance, high power devices were not supported by the characteristics of diodes and field effect transistors (FETs) fabricated on boron doped (p-type) thin film material. In this paper commercially accessible polycrystalline thin film diamond has been turned p-type by the incorporation of near surface hydrogen. Schottky diodes and metal-semiconductor FETs (MESFETs) have been fabricated using this approach which display unprecedented performance levels; diodes with a rectification ratio > 106, leakage currents < l nA, no indication of reverse bias breakdown at 100V and an ideality factor of 1.1 have been made. Simple MESFET structures that are capable of withstanding VDS values of 100V with low leakage and current saturation (pinch-off) characteristics have also been fabricated. Predictions based upon experiments performed on these devices suggest that optimised device structures will be capable of operation at power levels up to 20 W/mm, implying that thin film diamond may after all be an interesting material for power applications.


2013 ◽  
Vol 25 (15) ◽  
pp. 2229-2233 ◽  
Author(s):  
Mao Wang ◽  
Jie Li ◽  
Guangyao Zhao ◽  
Qinghe Wu ◽  
Yangguang Huang ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 1110 ◽  
Author(s):  
Xiao-Mei Zhang ◽  
Sian-Hong Tseng ◽  
Ming-Yen Lu

Two-dimensional (2D) MoS2 has recently become of interest for applications in broad range photodetection due to their tunable bandgap. In order to develop 2D MoS2 photodetectors with ultrafast response and high responsivity, up-scalable techniques for realizing controlled p-type doping in MoS2 is necessary. In this paper, we demonstrate a p-type multilayer MoS2 photodetector with selective-area doping using CHF3 plasma treatment. Microscopic and spectroscopic characterization techniques, including atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), are used to investigate the morphological and electrical modification of the p-type doped MoS2 surface after CHF3 plasma treatment. Back-gated p-type MoS2 field-effect transistors (FETs) are fabricated with an on/off current ratio in the order of 103 and a field-effect mobility of 65.2 cm2V−1s−1. They exhibit gate-modulated ultraviolet photodetection with a rapid response time of 37 ms. This study provides a promising approach for the development of mild plasma-doped MoS2 as a 2D material in post-silicon electronic and optoelectronic device applications.


Sign in / Sign up

Export Citation Format

Share Document