Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation

Gene Therapy ◽  
2021 ◽  
Author(s):  
Gileade P. Freitas ◽  
Helena B. Lopes ◽  
Alann T. P. Souza ◽  
Maria Paula O. Gomes ◽  
Georgia K. Quiles ◽  
...  
2002 ◽  
Vol 292 (1) ◽  
pp. 144-152 ◽  
Author(s):  
Kris Partridge ◽  
Xuebin Yang ◽  
Nicholas M.P. Clarke ◽  
Yasunori Okubo ◽  
Kazuhisa Bessho ◽  
...  

2017 ◽  
Vol 15 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Melanie Hoellig ◽  
Fabian Westhauser ◽  
Kira Kornienko ◽  
Kai Xiao ◽  
Gerhard Schmidmaier ◽  
...  

Background Femoral material harvested using the Reamer-Irrigator-Aspirator (RIA) system is an alternative source for autogenous bone material in the treatment of non-unions, especially in combination with bone morphogenetic proteins (BMP). So far, there is no in vivo evidence of BMP-7 interacting with mesenchymal stem cells (MSCs) from RIA material (RIA-MSCs) and iliac crest autogenous bone (BMSCs). The aim of this study was to compare their osteogenic potential when stimulated with BMP-7 in vivo. Methods RIA-MSC and BMSC from 11 donors were isolated and the character of MSCs was investigated in vitro. Constructs consisting of MSC, β-tricalcium phosphate and 2 concentrations of BMP-7 (0.1 µg/mL and 1 µg/mL) were implanted in mice for 8 weeks. Bone formation in the constructs was analyzed quantitatively and qualitatively. Results All cell populations used were determined to be MSCs. The qualitative in vivo analysis showed formation of bone tissue. With regard to quantity, bone formation was significantly higher in RIA constructs without or with stimulation with 0.1 µg/mL BMP-7, compared with BMSC constructs. We found no significant differences between constructs stimulated with 1 µg/mL BMP-7. In the RIA group, we observed a significant increase in bone formation after stimulation with 0.1 µg/mL BMP-7. No significant change could be found using a higher concentration. In the BMSC group, we detected a significant increase when using 0.1 µg/mL and 1 µg/mL BMP-7. Conclusions RIA material is a source of MSCs with high osteogenic potential. Our results showed that stimulation by BMP-7 leads to an increased osteogenic potential of MSCs. In this respect, RIA-MSCs reacted more sensitively than BMSCs.


2019 ◽  
Vol 10 ◽  
pp. 204173141983042 ◽  
Author(s):  
Dong Joon Lee ◽  
Jane Kwon ◽  
Luke Current ◽  
Kun Yoon ◽  
Rahim Zalal ◽  
...  

Although bone marrow–derived mesenchymal stem cells (MSCs) have been extensively explored in bone tissue engineering, only few studies using mesenchymal stem cells from mandible (M-MSCs) have been reported. However, mesenchymal stem cells from mandible have the potential to be as effective as femur-derived mesenchymal stem cells (F-MSCs) in regenerating bone, especially in the orofacial regions, which share embryonic origin, proximity, and accessibility. M-MSCs were isolated and characterized using mesenchymal stem cell–specific markers, colony forming assay, and multi-potential differentiation. In vitro osteogenic potential, including proliferation, osteogenic gene expression, alkaline phosphatase activity, and mineralization, was examined and compared. Furthermore, in vivo bone formations of F-MSCs and M-MSCs in rat critical sized defect were evaluated using microCT and histology. M-MSCs from rat could be successfully isolated and expanded while preserving their MSC’s characteristics. M-MSCs demonstrated a comparable proliferation and mineralization potentials and in vivo bone formation as F-MSCs. M-MSCs is a promising cell source candidate for craniofacial bone tissue engineering.


2009 ◽  
Vol 185 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Guizhong Liu ◽  
Sapna Vijayakumar ◽  
Luca Grumolato ◽  
Randy Arroyave ◽  
HuiFang Qiao ◽  
...  

Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Hee Kim ◽  
Kyung-Ah Cho ◽  
Hyun-Ji Lee ◽  
Minhwa Park ◽  
Han Su Kim ◽  
...  

The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 118 ◽  
Author(s):  
Silvia Minardi ◽  
Joseph S. Fernandez-Moure ◽  
Dongmei Fan ◽  
Matthew B. Murphy ◽  
Iman K. Yazdi ◽  
...  

Bone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.


Biomaterials ◽  
2009 ◽  
Vol 30 (26) ◽  
pp. 4369-4376 ◽  
Author(s):  
Jinwen Tu ◽  
Huajie Wang ◽  
Huiwu Li ◽  
Kerong Dai ◽  
Jinye Wang ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
pp. 015004 ◽  
Author(s):  
Viviane S Gomide ◽  
Alessandra Zonari ◽  
Natalia M Ocarino ◽  
Alfredo M Goes ◽  
Rogéria Serakides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document