scholarly journals Moving from drought hazard to impact forecasts

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Samuel J. Sutanto ◽  
Melati van der Weert ◽  
Niko Wanders ◽  
Veit Blauhut ◽  
Henny A. J. Van Lanen

Abstract Present-day drought early warning systems provide the end-users information on the ongoing and forecasted drought hazard (e.g. river flow deficit). However, information on the forecasted drought impacts, which is a prerequisite for drought management, is still missing. Here we present the first study assessing the feasibility of forecasting drought impacts, using machine-learning to relate forecasted hydro-meteorological drought indices to reported drought impacts. Results show that models, which were built with more than 50 months of reported drought impacts, are able to forecast drought impacts a few months ahead. This study highlights the importance of drought impact databases for developing drought impact functions. Our findings recommend that institutions that provide operational drought early warnings should not only forecast drought hazard, but also impacts after developing an impact database.

2020 ◽  
Vol 101 (4) ◽  
pp. E368-E393 ◽  
Author(s):  
Samuel Jonson Sutanto ◽  
Henny A. J. Van Lanen ◽  
Fredrik Wetterhall ◽  
Xavier Llort

Abstract Drought early warning systems (DEWS) have been developed in several countries in response to high socioeconomic losses caused by droughts. In Europe, the European Drought Observatory (EDO) monitors the ongoing drought and forecasts soil moisture anomalies up to 7 days ahead and meteorological drought up to 3 months ahead. However, end users managing water resources often require hydrological drought warning several months in advance. To answer this challenge, a seasonal pan-European DEWS has been developed and has been running in a preoperational mode since mid-2018 under the EU-funded Enhancing Emergency Management and Response to Extreme Weather and Climate Events (ANYWHERE) project. The ANYWHERE DEWS (AD-EWS) is different than other operational DEWS in the sense that the AD-EWS provides a wide range of seasonal hydrometeorological drought forecasting products in addition to meteorological drought, that is, a broad suite of drought indices that covers all water cycle components (drought in precipitation, soil moisture, runoff, discharge, and groundwater). The ability of the AD-EWS to provide seasonal drought predictions in high spatial resolution (5 km × 5 km) and its diverse products mark the AD-EWS as a preoperational drought forecasting system that can serve a broad range of different users’ needs in Europe. This paper introduces the AD-EWS and shows some examples of different drought forecasting products, the drought forecast score, and some examples of a user-driven assessment of forecast trust levels.


2015 ◽  
Vol 15 (6) ◽  
pp. 1381-1397 ◽  
Author(s):  
S. Bachmair ◽  
I. Kohn ◽  
K. Stahl

Abstract. Current drought monitoring and early warning systems use different indicators for monitoring drought conditions and apply different indicator thresholds and rules for assigning drought intensity classes or issue warnings or alerts. Nevertheless, there is little knowledge on the meaning of different hydro-meteorologic indicators for impact occurrence on the ground. To date, there have been very few attempts to systematically characterize the indicator–impact relationship owing to sparse and patchy data on drought impacts. The newly established European Drought Impact report Inventory (EDII) offers the possibility to investigate this linkage. The aim of this study was to explore the link between hydro-meteorologic indicators and drought impacts for the case study area Germany and thus to test the potential of qualitative impact data for evaluating the performance of drought indicators. As drought indicators two climatological drought indices – the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) – as well as streamflow and groundwater level percentiles were selected. Linkage was assessed though data visualization, extraction of indicator values concurrent with impact onset, and correlation analysis between monthly time series of indicator and impact data at the federal state level, and between spatial patterns for selected drought events. The analysis clearly revealed a significant moderate to strong correlation for some states and drought events allowing for an intercomparison of the performance of different drought indicators. Important findings were strongest correlation for intermediate accumulation periods of SPI and SPEI, a slightly better performance of SPEI versus SPI, and a similar performance of streamflow percentiles to SPI in many cases. Apart from these commonalities, the analysis also exposed differences among federal states and drought events, suggesting that the linkage is time variant and region specific to some degree. Concerning "thresholds" for drought impact onset, i.e. indicator values concurrent with past impact onsets, we found that no single "best" threshold value can be identified but impacts occur within a range of indicator values. Nevertheless, the median of the threshold distributions showed differences between northern/northeastern versus southern/southwestern federal states, and among drought events. While the findings strongly depend on data and may change with a growing number of EDII entries in the future, this study clearly demonstrates the feasibility of evaluating hydro-meteorologic variables with text-based impact reports and highlights the value of impact reporting as a tool for monitoring drought conditions.


2021 ◽  
Author(s):  
Sarra Kchouk ◽  
Lieke A. Melsen ◽  
David W. Walker ◽  
Pieter R. van Oel

Abstract. Drought monitoring and Early Warning Systems (DEWS) are seen as helpful tools to tackle drought at an early stage and reduce the possibility of harm or loss. They usually include indices attributed to meteorological, agricultural and/or hydrological drought: physically based drought drivers. These indices are used to determine the onset, end and severity of a drought event. Drought impacts are less monitored or even not included in DEWS. Therefore, the likelihood of experiencing drought impacts is often simply linearly linked to drivers of drought. The aim of this study is to evaluate the validity of the assumed direct linkage between drivers of drought and drought impact. We reviewed scientific literature on both drivers and impacts of drought. We conducted a bibliometric analysis based on 5000+ scientific studies in which selected drought indices (drivers) and drought impacts were mentioned in relation to a geographic area. Our review shows that there is a tendency in scientific literature to focus on drivers of drought, with the preferred use of meteorological and remotely sensed drought indices. Studies reporting drought impacts are more localised, with relatively many studies focusing on Sub-Saharan Africa and Australasia for impacts with regard to food security and water security, respectively. Our review further suggests that drought-impacts studies are dependent on both the physical and human processes occurring in the geographic area, i.e. the local context. With the aim of increasing the relevance and utility of the information provided by DEWS, we argue in favour of additional consideration of drought impact indices oriented towards sustainable development and human welfare.


2014 ◽  
Vol 2 (12) ◽  
pp. 7583-7620 ◽  
Author(s):  
S. Bachmair ◽  
I. Kohn ◽  
K. Stahl

Abstract. Current drought monitoring and early warning systems use different indicators for monitoring drought conditions and apply different indicator thresholds and rules for assigning drought intensity classes or issue warnings or alerts. Nevertheless, there is little knowledge on the meaning of different hydro-meteorologic indicators for impact occurrence on the ground. To date, there have been very few attempts to systematically characterize the indicator–impact-relationship owing to the sparse and patchy data for ground truthing hydro-meteorologic variables. The newly established European Drought Impact report Inventory (EDII) offers the possibility to investigate this linkage. The aim of this study was to explore the link between hydro-meteorologic indicators and drought impacts for the case study area Germany and thus to test the potential of qualitative impact data for evaluating the performance of drought indicators. As drought indicators two climatological drought indices as well as streamflow and groundwater level percentiles were selected. Linkage was assessed though data visualization and correlation analysis between monthly timeseries of indicator–impact data at the federal state level, and between spatial patterns for selected drought events. The analysis clearly revealed a significant moderate to strong correlation for some states and drought events allowing for an intercomparison of the performance of different drought indicators. While several commonalities could be identified regarding "best" indicator, indicator metric, and time-scale of climatic anomaly, the analysis also exposed differences among federal states and drought events, suggesting that the linkage is time-variant and region specific to some degree. Concerning thresholds associated with drought impact onset, we found that no single "best" threshold value can be identified but impacts occur within a range of indicator values. While the findings strongly depend on data and may change with a growing number of EDII entries in the future, this study clearly demonstrates the feasibility of ground truthing hydro-meteorologic variables with text-based impact reports and highlights the value of impact reporting as a tool for monitoring drought conditions.


2013 ◽  
Vol 10 (10) ◽  
pp. 12217-12254 ◽  
Author(s):  
G. Naumann ◽  
P. Barbosa ◽  
L. Garrote ◽  
A. Iglesias ◽  
J. Vogt

Abstract. Drought vulnerability is a complex concept that includes both biophysical and socio-economic drivers of drought impact that determine capacity to cope with drought. In order to develop an efficient drought early warning system and to be prepared to mitigate upcoming drought events it is important to understand the drought vulnerability of the affected regions. We propose a composite Drought Vulnerability Indicator (DVI) that reflects different aspects of drought vulnerability evaluated at Pan-African level in four components: the renewable natural capital, the economic capacity, the human and civic resources, and the infrastructure and technology. The selection of variables and weights reflects the assumption that a society with institutional capacity and coordination, as well as with mechanisms for public participation is less vulnerable to drought; furthermore we consider that agriculture is only one of the many sectors affected by drought. The quality and accuracy of a composite indicator depends on the theoretical framework, on the data collection and quality, and on how the different components are aggregated. This kind of approach can lead to some degree of scepticism; to overcome this problem a sensitivity analysis was done in order to measure the degree of uncertainty associated with the construction of the composite indicator. Although the proposed drought vulnerability indicator relies on a number of theoretical assumptions and some degree of subjectivity, the sensitivity analysis showed that it is a robust indicator and hence able of representing the complex processes that lead to drought vulnerability. According to the DVI computed at country level, the African countries classified with higher relative vulnerability are Somalia, Burundi, Niger, Ethiopia, Mali and Chad. The analysis of the renewable natural capital component at sub-basin level shows that the basins with high to moderate drought vulnerability can be subdivided in three main different geographical regions: the Mediterranean coast of Africa; the Sahel region and the Horn of Africa; the Serengeti and the Eastern Miombo woodlands in eastern Africa. Additionally, the western part of the Zambezi basin, the south-eastern border of the Congo basin and the belt of Fynbos in the Western Cape should also be included in this category. The results of the DVI at the country level were compared with drought disasters information from the EM-DAT disaster database. Even if a cause effect relationship cannot be established between the DVI and the drought disaster database, a good agreement is observed between the drought vulnerability maps and the number of persons affected by droughts. These results are a valuable contribution to the discussion on how to assess drought vulnerability and should contribute to the development of drought early warning systems in Africa.


2021 ◽  
Author(s):  
Dimmie Hendriks ◽  
Pieter Hazenberg ◽  
Jonas Gotte ◽  
Patricia Trambauer ◽  
Arjen Haag ◽  
...  

<p>An increasing number of regions and countries are confronted with droughts as well as an increase in water demand. Inevitably, this leads to an increasing pressure on the available water resources and associated risks and economic impact for the water dependent sectors. In order to prevent big drought impacts, such as agricultural damage and food insecurity, timely and focused drought mitigation measures need to be carried out. To enable this, the detection of drought and its sector-specific risks at early stages needs to be improved. One of the main challenges is to develop compound and impact-oriented drought indices, that make optimal use of innovative techniques, satellite products, local data and other big data sets.</p><p>Here, we present the development of a Next Generation Drought Index (NGDI) that combines multiple freely available global data sources (eg. ERA5, MODIS, PCR-GLOBWB) to calculate a range of relevant drought hazard indices related to meteorological, hydrological, soil moisture and agricultural drought (eg. SPI, SPEI, SRI, SGI, VCI). The drought hazard indices are aggregated at district level, while considering the percentage area exposure of the drought impacted sector (exposure). In addition, the indices are enriched with local and national scale drought impact information (eg. online news items, social media data, EM-DAT database, GDO Drought news, national drought reports). Results are presented at sub-national scales in interactive spatial and temporal views, showing the combined drought indices and impact data.</p><p>The NGDI approach is being tested for the agricultural sector in Mali, a country with a vulnerable population and economy that faces frequent dry spells which heavily impact the functioning of the important agricultural activities that sustain a large part of the population. The computed drought indices are compared with local drought data and an analysis is made of the cross-correlations between the indices within the NGDI and collected impact data.</p><p>We aim at providing the NGDI information to a broad audience as well as co-creation of further NGDI developments. Hence, we would like to reach out to interested parties and identify collaboration opportunities.</p>


2021 ◽  
Author(s):  
Sarra Kchouk ◽  
Pieter van Oel ◽  
Lieke Melsen

<p>Drought Early Warning Systems (DEWS) and Drought Monitoring Systems (DMS) are the principal tools used to tackle drought at an early stage and reduce the possibility of harm or loss. They are based on the use of drought indicators attributed to either : meteorological, agricultural and hydrological drought. This means that it is mostly hydro-climatic variables that are used to determine the onset, end and severity of a drought.  Drought impacts are rarely continuously monitored or even not included in DEWS and DMS. In this configuration, the likelihood of experiencing impacts is linearly linked to the severity of climatic features only. The aim of our study is to question the direct linkage between the delivery of hydro-climatic information and the detection of drought impacts and their severity. We reviewed scientific literature on drought drivers and impacts and analyzed how these two compare. We conducted a bibliometric analysis based on 4000+ scientific studies sorted by geographic area in which selected (i) drought indicators and (ii) impacts of drought were mentioned. Our review points toward an attachment to a conceptual view of drought by the main and broader use of meteorological (computed and remotely sensed) drought indicators. Studies reporting impacts related to food and water securities are more localized, respectively in Sub-Saharan Africa and Australasia. This mismatch suggests a tendency to translate hydroclimatic indicators of drought directly into impacts while neglecting relevant local contextual information. With the aim of sharpening the information provided by DEWS and DMS, we argue in favor of an additional consideration of drought indicators oriented towards the SDGs.</p>


2019 ◽  
Vol 100 (6) ◽  
pp. 1011-1027 ◽  
Author(s):  
Chris Funk ◽  
Shraddhanand Shukla ◽  
Wassila Mamadou Thiaw ◽  
James Rowland ◽  
Andrew Hoell ◽  
...  

AbstractOn a planet with a population of more than 7 billion, how do we identify the millions of drought-afflicted people who face a real threat of livelihood disruption or death without humanitarian assistance? Typically, these people are poor and heavily dependent on rainfed agriculture and livestock. Most live in Africa, Central America, or Southwest Asia. When the rains fail, incomes diminish while food prices increase, cutting off the poorest (most often women and children) from access to adequate nutrition. As seen in Ethiopia in 1984 and Somalia in 2011, food shortages can lead to famine. Yet these slow-onset disasters also provide opportunities for effective intervention, as seen in Ethiopia in 2015 and Somalia in 2017. Since 1985, the U.S. Agency for International Development’s Famine Early Warning Systems Network (FEWS NET) has been providing evidence-based guidance for effective humanitarian relief efforts. FEWS NET depends on a Drought Early Warning System (DEWS) to help understand, monitor, model, and predict food insecurity. Here we provide an overview of FEWS NET’s DEWS using examples from recent climate extremes. While drought monitoring and prediction provides just one part of FEWS NET’s monitoring system, it draws from many disciplines—remote sensing, climate prediction, agroclimatic monitoring, and hydrologic modeling. Here we describe FEWS NET’s multiagency multidisciplinary DEWS and Food Security Outlooks. This DEWS uses diagnostic analyses to guide predictions. Midseason droughts are monitored using multiple cutting-edge Earth-observing systems. Crop and hydrologic models can translate these observations into impacts. The resulting information feeds into FEWS NET reports, helping to save lives by motivating and targeting timely humanitarian assistance.


2020 ◽  
Vol 248 ◽  
pp. 111886 ◽  
Author(s):  
Adam B. Barrett ◽  
Steven Duivenvoorden ◽  
Edward E. Salakpi ◽  
James M. Muthoka ◽  
John Mwangi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document