scholarly journals Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinshi Li ◽  
Pingchuan Shen ◽  
Shijie Zhen ◽  
Chun Tang ◽  
Yiling Ye ◽  
...  

AbstractMolecular potentiometers that can indicate displacement-conductance relationship, and predict and control molecular conductance are of significant importance but rarely developed. Herein, single-molecule potentiometers are designed based on ortho-pentaphenylene. The ortho-pentaphenylene derivatives with anchoring groups adopt multiple folded conformers and undergo conformational interconversion in solutions. Solvent-sensitive multiple conductance originating from different conformers is recorded by scanning tunneling microscopy break junction technique. These pseudo-elastic folded molecules can be stretched and compressed by mechanical force along with a variable conductance by up to two orders of magnitude, providing an impressively higher switching factor (114) than the reported values (ca. 1~25). The multichannel conductance governed by through-space and through-bond conducting pathways is rationalized as the charge transport mechanism for the folded ortho-pentaphenylene derivatives. These findings shed light on exploring robust single-molecule potentiometers based on helical structures, and are conducive to fundamental understanding of charge transport in higher-order helical molecules.

2020 ◽  
Vol 11 (23) ◽  
pp. 6026-6030
Author(s):  
Zhongwu Bei ◽  
Yuan Huang ◽  
Yangwei Chen ◽  
Yiping Cao ◽  
Jin Li

We report the first example of photo-induced carbocation-enhanced charge transport in triphenylmethane junctions using the scanning tunneling microscopy break junction (STM-BJ) technique.


Nanoscale ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Samuel Bouvron ◽  
Romain Maurand ◽  
Alexander Graf ◽  
Philipp Erler ◽  
Luca Gragnaniello ◽  
...  

Using scanning tunneling microscopy and spectroscopy, we investigate the impact of the gate voltage on the electronic levels of CoPc molecules deposited on top of a graphene/SiO2/Si device.


2015 ◽  
Vol 3 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Oleg Lozynskyi ◽  
Cécile Barthes ◽  
Arnaud Rives ◽  
Valérie Maraval ◽  
Zoia Voitenko ◽  
...  

The macro-aromatic carbo-benzene core para-disubstituted by 4-anilinyl groups is known to be an efficient single-molecule conductor, exhibiting a conductance of 106 nS measured by the scanning tunneling microscopy-break junction technique. The linear carbo-butadiene analogue bearing the same anilinyl substituents was found to be less efficient, with a conductance of 2.7 nS. The reason of this difference could be elucidated through the study of the charge transport properties of a cyclically locked carbo-butadiene core in a carbo-cyclohexadiene derivative. In this paper, advances in the synthesis of this challenging dianilinyl-substituted carbo-cyclohexadiene are presented.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 95-98
Author(s):  
Hiroshi Imada ◽  
Miyabi Imai-Imada ◽  
Kuniyuki Miwa ◽  
Hidemasa Yamane ◽  
Takeshi Iwasa ◽  
...  

Ways to characterize and control excited states at the single-molecule and atomic levels are needed to exploit excitation-triggered energy-conversion processes. Here, we present a single-molecule spectroscopic method with micro–electron volt energy and submolecular-spatial resolution using laser driving of nanocavity plasmons to induce molecular luminescence in scanning tunneling microscopy. This tunable and monochromatic nanoprobe allows state-selective characterization of the energy levels and linewidths of individual electronic and vibrational quantum states of a single molecule. Moreover, we demonstrate that the energy levels of the states can be finely tuned by using the Stark effect and plasmon-exciton coupling in the tunneling junction. Our technique and findings open a route to the creation of designed energy-converting functions by using tuned energy levels of molecular systems.


2018 ◽  
Author(s):  
Kun Wang ◽  
Andrea Vezzoli ◽  
Iain Grace ◽  
Maeve McLaughlin ◽  
Richard Nichols ◽  
...  

We have used scanning tunneling microscopy to create and study single molecule junctions with thioether-terminated oligothiophene molecules. We find that the conductance of these junctions increases upon formation of charge transfer complexes of the molecules with tetracyanoethene, and that the extent of the conductance increase is greater the longer is the oligothiophene, i.e. the lower is the conductance of the uncomplexed molecule in the junction. We use non-equilibrium Green's function transport calculations to explore the reasons for this theoretically, and find that new resonances appear in the transmission function, pinned close to the Fermi energy of the contacts, as a consequence of the charge transfer interaction. This is an example of a room temperature quantum interference effect, which in this case boosts junction conductance in contrast to earlier observations of QI that result in diminished conductance.<br>


Author(s):  
Hongxiang Li ◽  
Rui Wang ◽  
Kai Song ◽  
Caiyun Wei ◽  
Wenjing Hong ◽  
...  

The understanding of charge transport at single-molecule level is a pre-requisite for the fabrication of molecular devices. Here, we systematically investigate the relation among molecular conductance, substitution pattern and stimuli...


Sign in / Sign up

Export Citation Format

Share Document