scholarly journals Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer’s disease

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angela M. Crist ◽  
Kelly M. Hinkle ◽  
Xue Wang ◽  
Christina M. Moloney ◽  
Billie J. Matchett ◽  
...  

AbstractSelective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer’s disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.

Author(s):  
Antonio Giovannetti ◽  
Gianluca Susi ◽  
Paola Casti ◽  
Arianna Mencattini ◽  
Sandra Pusil ◽  
...  

AbstractIn this paper, we present the novel Deep-MEG approach in which image-based representations of magnetoencephalography (MEG) data are combined with ensemble classifiers based on deep convolutional neural networks. For the scope of predicting the early signs of Alzheimer’s disease (AD), functional connectivity (FC) measures between the brain bio-magnetic signals originated from spatially separated brain regions are used as MEG data representations for the analysis. After stacking the FC indicators relative to different frequency bands into multiple images, a deep transfer learning model is used to extract different sets of deep features and to derive improved classification ensembles. The proposed Deep-MEG architectures were tested on a set of resting-state MEG recordings and their corresponding magnetic resonance imaging scans, from a longitudinal study involving 87 subjects. Accuracy values of 89% and 87% were obtained, respectively, for the early prediction of AD conversion in a sample of 54 mild cognitive impairment subjects and in a sample of 87 subjects, including 33 healthy controls. These results indicate that the proposed Deep-MEG approach is a powerful tool for detecting early alterations in the spectral–temporal connectivity profiles and in their spatial relationships.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Laurence Barrier ◽  
Bernard Fauconneau ◽  
Anastasia Noël ◽  
Sabrina Ingrand

There is evidence linking sphingolipid abnormalities, APP processing, and neuronal death in Alzheimer's disease (AD). We previously reported a strong elevation of ceramide levels in the brain of the APPSL/PS1Ki mouse model of AD, preceding the neuronal death. To extend these findings, we analyzed ceramide and related-sphingolipid contents in brain from two other mouse models (i.e., APPSLand APPSL/PS1M146L) in which the time-course of pathology is closer to that seen in most currently available models. Conversely to our previous work, ceramides did not accumulate in disease-associated brain regions (cortex and hippocampus) from both models. However, the APPSL/PS1Ki model is unique for its drastic neuronal loss coinciding with strong accumulation of neurotoxic Aβisoforms, not observed in other animal models of AD. Since there are neither neuronal loss nor toxic Aβspecies accumulation in APPSLmice, we hypothesized that it might explain the lack of ceramide accumulation, at least in this model.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


2019 ◽  
Vol 137 (4) ◽  
pp. 557-569 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1520
Author(s):  
Gabriel Santpere ◽  
Marco Telford ◽  
Pol Andrés-Benito ◽  
Arcadi Navarro ◽  
Isidre Ferrer

The human herpesvirus 6 (HHV‐6) ‐A and ‐B are two dsDNA beta‐herpesviruses infectingalmost the entire worldwide population. These viruses have been implicated in multipleneurological conditions in individuals of various ages and immunological status, includingencephalitis, epilepsy, and febrile seizures. HHV‐6s have also been suggested as playing a role inthe etiology of neurodegenerative diseases such as multiple sclerosis and Alzheimer’s disease. Theapparent robustness of these suggested associations is contingent on the accuracy of HHV‐6detection in the nervous system. The effort of more than three decades of researching HHV‐6 in thebrain has yielded numerous observations, albeit using variable technical approaches in terms oftissue preservation, detection techniques, sample sizes, brain regions, and comorbidities. In thisreview, we aimed to summarize current knowledge about the entry routes and direct presence ofHHV‐6 in the brain parenchyma at the level of DNA, RNA, proteins, and specific cell types, inhealthy subjects and in those with neurological conditions. We also discuss recent findings relatedto the presence of HHV‐6 in the brains of patients with Alzheimer’s disease in light of availableevidence.


2008 ◽  
Vol 33 (2) ◽  
pp. 240-256 ◽  
Author(s):  
Winnie S. Liang ◽  
Travis Dunckley ◽  
Thomas G. Beach ◽  
Andrew Grover ◽  
Diego Mastroeni ◽  
...  

Alzheimer's Disease (AD) is the most widespread form of dementia during the later stages of life. If improved therapeutics are not developed, the prevalence of AD will drastically increase in the coming years as the world's population ages. By identifying differences in neuronal gene expression profiles between healthy elderly persons and individuals diagnosed with AD, we may be able to better understand the molecular mechanisms that drive AD pathogenesis, including the formation of amyloid plaques and neurofibrillary tangles. In this study, we expression profiled histopathologically normal cortical neurons collected with laser capture microdissection (LCM) from six anatomically and functionally discrete postmortem brain regions in 34 AD-afflicted individuals, using Affymetrix Human Genome U133 Plus 2.0 microarrays. These regions include the entorhinal cortex, hippocampus, middle temporal gyrus, posterior cingulate cortex, superior frontal gyrus, and primary visual cortex. This study is predicated on previous parallel research on the postmortem brains of the same six regions in 14 healthy elderly individuals, for which LCM neurons were similarly processed for expression analysis. We identified significant regional differential expression in AD brains compared with control brains including expression changes of genes previously implicated in AD pathogenesis, particularly with regard to tangle and plaque formation. Pinpointing the expression of factors that may play a role in AD pathogenesis provides a foundation for future identification of new targets for improved AD therapeutics. We provide this carefully phenotyped, laser capture microdissected intraindividual brain region expression data set to the community as a public resource.


Author(s):  
Yegnanarayanan Venkatraman ◽  
◽  
Narayanaa Y Krithicaa ◽  
Valentina E. Balas ◽  
Marius M. Balas ◽  
...  

Notice that the synapsis of brain is a form of communication. As communication demands connectivity, it is not a surprise that "graph theory" is a fastest growing area of research in the life sciences. It attempts to explain the connections and communication between networks of neurons. Alzheimer’s disease (AD) progression in brain is due to a deposition and development of amyloid plaque and the loss of communication between nerve cells. Graph/network theory can provide incredible insights into the incorrect wiring leading to memory loss in a progressive manner. Network in AD is slanted towards investigating the intricate patterns of interconnections found in the pathogenesis of brain. Here, we see how the notions of graph/network theory can be prudently exploited to comprehend the Alzheimer’s disease. We begin with introducing concepts of graph/network theory as a model for specific genetic hubs of the brain regions and cellular signalling. We begin with a brief introduction of prevalence and causes of AD followed by outlining its genetic and signalling pathogenesis. We then present some of the network-applied outcome in assessing the disease-signalling interactions, signal transduction of protein-protein interaction, disturbed genetics and signalling pathways as compelling targets of pathogenesis of the disease.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


Sign in / Sign up

Export Citation Format

Share Document