scholarly journals Access to enantioenriched compounds bearing challenging tetrasubstituted stereocenters via kinetic resolution of auxiliary adjacent alcohols

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengtong Niu ◽  
Hao Zhang ◽  
Weici Xu ◽  
Prasanta Ray Bagdi ◽  
Guoxiang Zhang ◽  
...  

AbstractContemporary asymmetric catalysis faces huge challenges when prochiral substrates bear electronically and sterically unbiased substituents and when substrates show low reactivities. One of the inherent limitations of chiral catalysts and ligands is their incapability in recognizing prochiral substrates bearing similar groups. This has rendered many enantiopure substances bearing several similar substituents inaccessible. Here we report the rationale, scope, and applications of the strategy of kinetic resolution of auxiliary adjacent alcohols (KRA*) that can be used to solve the above troubles. Using this method, a large variety of optically enriched tertiary alcohols, epoxides, esters, ketones, hydroxy ketones, epoxy ketones, β-ketoesters, and tetrasubstituted methane analogs with two, three, and four spatially and electronically similar groups can be readily obtained (totally 96 examples). At the current stage, the strategy serves as the optimal solution that can complement the inability caused by direct asymmetric catalysis in getting chiral molecules with challenging fully substituted stereocenters.

Synthesis ◽  
2021 ◽  
Author(s):  
Bo Ding ◽  
Qilin Xue ◽  
Shihu Jia ◽  
Hong-Gang Cheng ◽  
Qianghui Zhou

The kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng-Ying Jiang ◽  
Kai-Fang Fan ◽  
Shaoyu Li ◽  
Shao-Hua Xiang ◽  
Bin Tan

AbstractAs an important platform molecule, atropisomeric QUINOL plays a crucial role in the development of chiral ligands and catalysts in asymmetric catalysis. However, efficient approaches towards QUINOL remain scarce, and the resulting high production costs greatly impede the related academic research as well as downstream industrial applications. Here we report a direct oxidative cross-coupling reaction between isoquinolines and 2-naphthols, providing a straightforward and scalable route to acquire the privileged QUINOL scaffolds in a metal-free manner. Moreover, a NHC-catalyzed kinetic resolution of QUINOL N-oxides with high selectivity factor is established to access two types of promising axially chiral Lewis base catalysts in optically pure forms. The utility of this methodology is further illustrated by facile transformations of the products into QUINAP, an iconic ligand in asymmetric catalysis.


2020 ◽  
Author(s):  
Hiroki Mandai ◽  
Ryuhei Shiomoto ◽  
Kazuki Fujii ◽  
Koichi Mitsudo ◽  
Seiji Suga

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2127
Author(s):  
Thomas J. Summers ◽  
Hrishikesh Tupkar ◽  
Tyler M. Ozvat ◽  
Zoë Tregillus ◽  
Kenneth A. Miller ◽  
...  

The restricted rotation of chemical bonds may lead to the formation of stable, conformationally chiral molecules. While the asymmetry in chiral molecules is generally observed in the presence of one or more stereocenters, asymmetry exhibited by conformational chirality in compounds lacking stereocenters, called atropisomerism, depends on structural and temperature factors that are still not fully understood. This atropisomerism is observed in natural diarylether heptanoids where the length of the intramolecular tether constrains the compounds to isolable enantiomers at room temperature. In this work, we examine the impact tether length has on the activation free energies to isomerization of a diarylether cyclophane substructure with a tether ranging from 6 to 14 carbons. Racemization activation energies are observed to decay from 48 kcal/mol for a 7-carbon tether to 9.2 kcal/mol for a 14-carbon tether. Synthetic efforts to experimentally test these constraints are also presented. This work will likely guide the design and synthesis of novel asymmetric cyclophanes that will be of interest in the catalysis community given the importance of atropisomeric ligands in the field of asymmetric catalysis.


2000 ◽  
Vol 11 (10) ◽  
pp. 2049-2052 ◽  
Author(s):  
Mangalam S Nair ◽  
S Joly

Synthesis ◽  
2004 ◽  
Vol 112 (08) ◽  
Author(s):  
Eietsu Hasegawa ◽  
Naoki Chiba ◽  
Aiko Nakajima ◽  
Kumiko Suzuki ◽  
Akira Yoneoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document