scholarly journals Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Wang ◽  
Pengju Ren ◽  
Jingting Hu ◽  
Yunchuan Tu ◽  
Zhongmiao Gong ◽  
...  

AbstractAchieving CO oxidation at room temperature is significant for gas purification but still challenging nowadays. Pt promoted by 3d transition metals (TMs) is a promising candidate for this reaction, but TMs are prone to be deeply oxidized in an oxygen-rich atmosphere, leading to low activity. Herein we report a unique structure design of graphene-isolated Pt from CoNi nanoparticles (PtǀCoNi) for efficiently catalytic CO oxidation in an oxygen-rich atmosphere. CoNi alloy is protected by ultrathin graphene shell from oxidation and therefore modulates the electronic property of Pt-graphene interface via electron penetration effect. This catalyst can achieve near 100% CO conversion at room temperature, while there are limited conversions over Pt/C and Pt/CoNiOx catalysts. Experiments and theoretical calculations indicate that CO will saturate Pt sites, but O2 can adsorb at the Pt-graphene interface without competing with CO, which facilitate the O2 activation and the subsequent surface reaction. This graphene-isolated system is distinct from the classical metal-metal oxide interface for catalysis, and it provides a new thought for the design of heterogeneous catalysts.

2016 ◽  
Vol 4 (46) ◽  
pp. 18075-18083 ◽  
Author(s):  
Chunzheng Wu ◽  
Rosaria Brescia ◽  
Mirko Prato ◽  
Sergio Marras ◽  
Liberato Manna ◽  
...  

Colloidal Au–MnO heterodimers were deposited on SiO2 and calcined at high temperature in air in order to prepare a ligand-free Au–Mn3O4/SiO2 model catalyst for CO oxidation with a well-defined Au size and Au–metal oxide interface.


2021 ◽  
Vol 536 ◽  
pp. 147809
Author(s):  
Mingming Luo ◽  
Zhao Liang ◽  
Chao Liu ◽  
Xiaopeng Qi ◽  
Mingwei Chen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Li ◽  
Yang Li ◽  
Peng Li ◽  
Bin Fang ◽  
Xu Yang ◽  
...  

AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.


2003 ◽  
Vol 547 (1-2) ◽  
pp. L859-L864 ◽  
Author(s):  
R Lindsay ◽  
E Michelangeli ◽  
B.G Daniels ◽  
M Polcik ◽  
A Verdini ◽  
...  

1994 ◽  
Vol 368 ◽  
Author(s):  
M. Malaty ◽  
D. Singh ◽  
R. Schaeffer ◽  
S. Jansen ◽  
S. Lawrence

ABSTRACTStudies of the mixed-metal interface in metal impregnated alumina have indicated the possibility of much metal-metal and metal-substrate interaction. Studies were carried out on NiCu/Al2O3 system which was evaluated to develop a better understanding of the forces that drive modification of the catalytic selectivity of Ni in the presence of Cu. Electron Paramagnetic Resonance (EPR), Powder X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD) and theoretical calculations were carried out on this bimetallic system, using Ni,Ag/Al2O3 as a reference as Ni shows negligible electron perturbation on co-adsorbance with Ag onto alumina. XRD results indicate that gross modification of the electronic fields of Ni and Cu are due to direct coupling and intercalation into the alumina matrix. As a result of this phenomena, these materials may form a good base for the development of novel ceramics based on mixed-metal interactions where the intermetallic perturbations are driven by the substrate effects.


2015 ◽  
Vol 17 (3) ◽  
pp. 1867-1876 ◽  
Author(s):  
Shilpi Ghosh ◽  
Shankha S. Acharyya ◽  
Takehiko Sasaki ◽  
Rajaram Bal

Heterogeneous catalysts comprising silver nanoparticles supported on nanostructured tungsten oxide were applied for room temperature oxidative coupling of aniline to azoxybenzene, an important chemical intermediate and a chemical of industrial interest.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Jurin Kanarat ◽  
Thanthapatra Bunchuay ◽  
Wantana Klysubun ◽  
Jonggol Tantirungrotechai

ACS Catalysis ◽  
2014 ◽  
Vol 4 (10) ◽  
pp. 3481-3489 ◽  
Author(s):  
Shuo Zhang ◽  
Xiao-Song Li ◽  
Bingbing Chen ◽  
Xiaobing Zhu ◽  
Chuan Shi ◽  
...  

Author(s):  
Jawed Qaderi

The catalytic reduction of CO2 to methanol is an appealing option to reduce greenhouse gas concentration as well as renewable energy production. In addition, the exhaustion of fossil fuel, increase in earth temperature and sharp increases in fuel prices are the main driving factor for exploring the synthesis of methanol by hydrogenating CO2. Many studies on the catalytic hydrogenation of CO2 to methanol were published in the literature over the last few decades. Many of the studies have presented different catalysts having high stability, higher performance, low cost, and are immediately required to promote conversion. Understanding the mechanisms involved in the conversion of CO2 is essential as the first step towards creating these catalysts. This review briefly summarizes recent theoretical developments in mechanistic studies focused on using density functional theory, kinetic Monte Carlo simulations, and microkinetics modeling. Based on these simulation techniques on different transition metals, metal/metal oxide, and other heterogeneous catalysts surfaces, mainly, three important mechanisms that have been recommended are the formate (HCOO), reverse water–gas shift (RWGS), and trans-COOH mechanisms. Recent experimental and theoretical efforts appear to demonstrate that the formate route in which the main intermediate species is H2CO* in the reaction route, is more favorable in catalytic hydrogenation of CO2 to chemical fuels in various temperature and pressure conditions.


Sign in / Sign up

Export Citation Format

Share Document