Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats

Author(s):  
Yu-Feng Hu ◽  
An-Sheng Lee ◽  
Shih-Lin Chang ◽  
Shien-Fong Lin ◽  
Ching-Hui Weng ◽  
...  
Keyword(s):  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Vinogradova ◽  
K Tarasov ◽  
D Riordon ◽  
Y Tarasova ◽  
E Lakatta

Abstract   The spontaneous beating rate of rabbit sinoatrial node cells (SANC) is regulated by local subsarcolemmal calcium releases (LCRs) from sarcoplasmic reticulum (SR). LCRs appear during diastolic depolarization (DD) and activate an inward sodium/calcium exchange current which increases DD rate and thus accelerates spontaneous SANC firing. High basal level of protein kinase A and calcium/calmodulin-dependent protein kinase II phosphorylation are required to sustain basal LCRs and normal spontaneous SANC firing. Recently we discovered that basal PKC activation is also obligatory for cardiac pacemaker function: inhibition of PKC activity by broad spectrum PKC inhibitors Bis I or calphostin C markedly suppressed SR calcium cycling and decreased or abolished spontaneous beating of freshly isolated rabbit SANC. Here we studied which PKC isoforms mediate PKC-dependent effects on cardiac pacemaker cell automaticity. The PKC superfamily consists of 3 major subgroups: conventional, novel and atypical. All PKC isoforms were detected at the RNA level (RT-qPCR) in the rabbit SA node and ventricle, and expression levels were comparable in both tissues. Expression of PKCβ, however, was markedly higher in the rabbit SA node, compared to other PKC isoenzymes in either tissue. We verified expression of conventional PKC (α, β) and novel PKC-delta at the protein level in SANC and ventricular myocytes (VM). Western blot confirmed RNA results, showing a 6-fold higher PKCβ protein abundance in SANC compared to VM. Expression of PKCα protein was similar in both cell types, while PKC-delta protein was more abundant in VM. To study whether PKCβ regulates spontaneous beating of SANC we employed selective inhibitor of conventional (α, β, gamma) PKC isoforms Go6976 (10 μmol/L), which had no effects on either LCR characteristics (confocal microscopy, calcium indicator Fluo-3AM) or spontaneous beating of freshly isolated rabbit SANC (perforated patch-clamp technique). Because selective PKC-delta inhibitors are not available, we explored effects of PKC-delta inhibition comparing effects of Go6976 (the inhibitor of conventional PKCs) and Go6983, which inhibits conventional PKCs and PKC-delta. In contrast to Go6976, Go6983 (5 μmol/L) markedly decreased the LCR size (from 7.1±0.4 to 4.5±0.3 μm) and number per each spontaneous cycle (from 1.3±0.1 to 0.8±0.1). It also markedly increased the LCR period (time from the prior AP-induced calcium transient to the subsequent LCR) which was paralleled by an increase in the spontaneous SANC cycle length. Rottlerin, another PKC-delta inhibitor, produced similar effects on LCR characteristics, and markedly and time-dependently decreased DD rate, leading to an increase in the spontaneous cycle length, and finally abrogated the spontaneous SANC firing. Thus, our data indicate that basal activity of PKC-delta, but not that of PKCβ, is essential for generation of LCRs and normal spontaneous firing of cardiac pacemaker cells. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Intramural Research Program, National Institute on Aging, National Institute of Health, USA


2009 ◽  
Vol 80 (4) ◽  
pp. 665-673 ◽  
Author(s):  
Rose Ellen Dixon ◽  
Sung Jin Hwang ◽  
Grant W. Hennig ◽  
Kyle H. Ramsey ◽  
Justin H. Schripsema ◽  
...  

Author(s):  
Anne-Marie Galow ◽  
Sophie Kussauer ◽  
Markus Wolfien ◽  
Ronald M. Brunner ◽  
Tom Goldammer ◽  
...  

AbstractSingle-cell RNA-sequencing (scRNA-seq) provides high-resolution insights into complex tissues. Cardiac tissue, however, poses a major challenge due to the delicate isolation process and the large size of mature cardiomyocytes. Regardless of the experimental technique, captured cells are often impaired and some capture sites may contain multiple or no cells at all. All this refers to “low quality” potentially leading to data misinterpretation. Common standard quality control parameters involve the number of detected genes, transcripts per cell, and the fraction of transcripts from mitochondrial genes. While cutoffs for transcripts and genes per cell are usually user-defined for each experiment or individually calculated, a fixed threshold of 5% mitochondrial transcripts is standard and often set as default in scRNA-seq software. However, this parameter is highly dependent on the tissue type. In the heart, mitochondrial transcripts comprise almost 30% of total mRNA due to high energy demands. Here, we demonstrate that a 5%-threshold not only causes an unacceptable exclusion of cardiomyocytes but also introduces a bias that particularly discriminates pacemaker cells. This effect is apparent for our in vitro generated induced-sinoatrial-bodies (iSABs; highly enriched physiologically functional pacemaker cells), and also evident in a public data set of cells isolated from embryonal murine sinoatrial node tissue (Goodyer William et al. in Circ Res 125:379–397, 2019). Taken together, we recommend omitting this filtering parameter for scRNA-seq in cardiovascular applications whenever possible.


1996 ◽  
Vol 270 (6) ◽  
pp. H2108-H2119 ◽  
Author(s):  
H. Muramatsu ◽  
A. R. Zou ◽  
G. A. Berkowitz ◽  
R. D. Nathan

A tetrodotoxin (TTX)-sensitive Na+ current (iNa) was investigated in single pacemaker cells after 1-4 days in culture. Ruptured-patch and perforated-patch whole cell recording techniques were used to record iNa and spontaneous electrical activity, respectively. For seven cells exposed to 20 mM Na+ (22-24 degrees C) and held at -98 mV (25% of the channels inactivated), the uncorrected maximum iNa was -39 +/- 10 pA/pF at -29.1 +/- 2.4 (SE) mV, maximum conductance was 0.9 +/- 0.2 nS/pF (1.6 +/- 0.2 mS/cm2). Half-activation and inactivation potentials were -41.4 +/- 2.0 and -90.6 +/- 2.5 mV, and the corresponding slope factors were 6.0 +/- 0.4 and 6.4 +/- 0.6 mV. Inactivation and recovery from inactivation were best fit by sums of two exponentials. During action potential clamp, a TTX-sensitive compensation current accounted for 55% of the upstroke velocity. The results suggest that iNa contributes significantly to the action potential in some nodal pacemaker cells, and the characteristics of iNa are similar to those of atrial and ventricular myocytes.


Sign in / Sign up

Export Citation Format

Share Document