scholarly journals Genome-scale determination of 5´ and 3´ boundaries of RNA transcripts in Streptomyces genomes

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongjae Lee ◽  
Namil Lee ◽  
Soonkyu Hwang ◽  
Woori Kim ◽  
Yujin Jeong ◽  
...  

AbstractStreptomyces species are gram-positive bacteria with GC-rich linear genomes and they serve as dominant reservoirs for producing clinically and industrially important secondary metabolites. Genome mining of Streptomyces revealed that each Streptomyces species typically encodes 20–50 secondary metabolite biosynthetic gene clusters (smBGCs), emphasizing their potential for novel compound discovery. Unfortunately, most of smBGCs are uncharacterized in terms of their products and regulation since they are silent under laboratory culture conditions. To translate the genomic potential of Streptomyces to practical applications, it is essential to understand the complex regulation of smBGC expression and to identify the underlying regulatory elements. To progress towards these goals, we applied two Next-Generation Sequencing methods, dRNA-Seq and Term-Seq, to industrially relevant Streptomyces species to reveal the 5´ and 3´ boundaries of RNA transcripts on a genome scale. This data provides a fundamental resource to aid our understanding of Streptomyces’ regulation of smBGC expression and to enhance their potential for secondary metabolite synthesis.

2019 ◽  
Author(s):  
Fabian Panter ◽  
Ronald Garcia ◽  
Angela Thewes ◽  
Nestor Zaburannyi ◽  
Boyke Bunk ◽  
...  

AbstractThe roles of the majority of bacterial secondary metabolites, especially those from uncommon sources are yet elusive even though many of these compounds show striking biological activities. To further investigate the secondary metabolite repertoire of underexploited bacterial families, we chose to analyze a novel representative of the yet untapped bacterial phylum Planctomycetes for the production of secondary metabolites under laboratory culture conditions. Development of a planctomycetal high density cultivation technique in combination with high resolution mass spectrometric analysis revealed Planctomycetales strain 10988 to produce the plant toxin 3,5 dibromo p-anisic acid. This molecule represents the first secondary metabolite reported from any planctomycete. Genome mining revealed the biosynthetic origin of this doubly brominated secondary metabolite and a biosynthesis model for the com-pound was devised. Comparison of the biosynthetic route to biosynthetic gene clusters responsible for formation of polybrominated small aromatic compounds reveals evidence for an evolutionary link, while the compound’s herbicidal activity points towards an ambivalent role of the metabolite in the planctomycetal ecosystem.


2008 ◽  
Vol 74 (24) ◽  
pp. 7607-7612 ◽  
Author(s):  
Edyta Szewczyk ◽  
Yi-Ming Chiang ◽  
C. Elizabeth Oakley ◽  
Ashley D. Davidson ◽  
Clay C. C. Wang ◽  
...  

ABSTRACT The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 193
Author(s):  
Jenny Schwarz ◽  
Georg Hubmann ◽  
Katrin Rosenthal ◽  
Stephan Lütz

Over the past decade, the one strain many compounds (OSMAC) approach has been established for the activation of biosynthetic gene clusters (BGCs), which mainly encode the enzymes of secondary metabolite (SM) biosynthesis pathways. These BGCs were successfully activated by altering various culture conditions, such as aeration rate, temperature, and nutrient composition. Here, we determined the biosynthetic potential of 43 bacteria using the genome mining tool antiSMASH. Based on the number of BGCs, biological safety, availability of deposited cultures, and literature coverage, we selected five promising candidates: Bacillus amyloliquefaciens DSM7, Corallococcus coralloides DSM2259, Pyxidicoccus fallax HKI727, Rhodococcus jostii DSM44719, and Streptomyces griseochromogenes DSM40499. The bacteria were cultivated under a broad range of OSMAC conditions (nutrient-rich media, minimal media, nutrient-limited media, addition of organic solvents, addition of biotic additives, and type of culture vessel) to fully assess the biosynthetic potential. In particular, we investigated so far scarcely applied OSMAC conditions to enhance the diversity of SMs. We detected the four predicted compounds bacillibactin, desferrioxamine B, myxochelin A, and surfactin. In total, 590 novel mass features were detected in a broad range of investigated OSMAC conditions, which outnumber the predicted gene clusters for all investigated bacteria by far. Interestingly, we detected mass features of the bioactive compounds cyclo-(Tyr-Pro) and nocardamin in extracts of DSM7 and DSM2259. Both compounds were so far not reported for these strains, indicating that our broad OSMAC screening approach was successful. Remarkably, the infrequently applied OSMAC conditions in defined medium with and without nutrient limitation were demonstrated to be very effective for BGC activation and for SM discovery.


Author(s):  
Jenny Schwarz ◽  
Stephan Lütz

Over the past decade, the One Strain Many Compounds (OSMAC) approach has been established for silent gene cluster activation and elicitation of secondary metabolite production, but so far the full secondary metabolome of a biosynthetically promising bacterium has not been elucidated yet. Here, we investigate the ability of seven categories of OSMAC conditions to enhance the diversity of new mass features from bacterial strains with little literature coverage but high biosynthetic potential. The strains Bacillus. amyloliquefaciens DSM7, Corallococcus. coralloides DSM2259, Pyxidicoccus. fallax HKI727, Rhodococcus. jostii DSM44719, and Streptomyces. griseochromogenes DSM40499 were selected after genome mining with antiSMASH. After cultivation under OSMAC conditions, the generated extracts were subjected to LC-MS and MZmine analysis to determine new mass features and evaluate the tested culture conditions. 4 predicted compounds, bacillibactin, desferrioxamine B, myxochelin A, and surfactin, were identified and up to 147 new mass features were detected in the generated extracts, which greatly surpasses the number of predicted gene clusters. Among the new mass features are bioactive compounds that were so far unreported for the strains such as cyclo-(Tyr-Pro) from DSM7 and nocardamin from DSM2259. Furthermore, the tested culture conditions were evaluated regarding their suitability for the generation of new mass features from the selected strains and promising new starting points for further screenings are postulated. Especially culture conditions with little prior literature coverage are responsible for the activation of predicted gene clusters


2021 ◽  
Author(s):  
Dingrong Kang ◽  
Saeed Shoaie ◽  
Samuel Jacquiod ◽  
Søren Johannes Sørensen ◽  
Rodrigo Ledesma-Amaro

Several efforts have been made to valorize keratinous materials, an abundant and renewable resource. Despite these attempts to valorize products generated from keratin hydrolysate, either via chemical or microbial conversion, they generally remain with an overall low value. In this study, a promising keratinolytic strain from the genus Chryseobacterium (Chryseobacteriumsp. KMC2) was investigated using comparative genomic tools against publicly available reference genomes to reveal the metabolic potential for biosynthesis of valuable secondary metabolites. Genome and metabolic features of four species were compared, shows different gene numbers but similar functional categories. We successfully mined eleven different secondary metabolite gene clusters of interest from the four genomes, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, all showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium spp. and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, providing alternatives to valorize keratinous materials into high-value natural products.


Author(s):  
Jenny Schwarz ◽  
Stephan Lütz

Over the past decade, the One Strain Many Compounds (OSMAC) approach has been established for silent gene cluster activation and elicitation of secondary metabolite production, but so far the full secondary metabolome of a biosynthetically promising bacterium has not been elucidated yet. Here, we investigate the ability of seven categories of OSMAC conditions to elicit new mass features from bacterial strains with little literature coverage but high biosynthetic potential. The strains B. amyloliquefaciens DSM7, C. coralloides DSM2259, P. fallax HKI727, R. jostii DSM44719 and S. griseochromogenes DSM40499 were selected after genome mining with antiSMASH. After cultivation under OSMAC conditions, the generated extracts were subjected to LC/MS and MZmine analysis to determine new mass features, expressed gene clusters and evaluate the tested culture conditions. 4 predicted compounds, bacillibactin, desferrioxamine B, myxochelin A and surfactin, were identified and up to 147 new mass features were detected in the generated extracts, which greatly surpasses the number of predicted gene clusters. Among the new mass features are bioactive compounds which were so far unreported for the strains such as cyclo-(Tyr-Pro) from DSM7 and nocardamin from DSM2259. Furthermore, the tested culture conditions were evaluated regarding their suitability for the generation of new mass features from the selected strains and promising new starting points for further screenings are postulated. Especially culture conditions with little prior literature coverage are responsible for the activation of secondary metabolite production.


2021 ◽  
Vol 9 (5) ◽  
pp. 1042
Author(s):  
Dingrong Kang ◽  
Saeed Shoaie ◽  
Samuel Jacquiod ◽  
Søren J. Sørensen ◽  
Rodrigo Ledesma-Amaro

A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp. KMC2) was investigated using comparative genomic tools against three publicly available reference genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites. Genomic features and metabolic potential of four species were compared, showing genomic differences but similar functional categories. Eleven different secondary metabolite gene clusters of interest were mined from the four genomes successfully, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide alternatives to valorize keratinous materials into high-value bioactive natural products.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Fabian Horn ◽  
Jörg Linde ◽  
Derek J. Mattern ◽  
Grit Walther ◽  
Reinhard Guthke ◽  
...  

Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504) . The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Soonkyu Hwang ◽  
Namil Lee ◽  
Donghui Choe ◽  
Yongjae Lee ◽  
Woori Kim ◽  
...  

ABSTRACT Identification of transcriptional regulatory elements in the GC-rich Streptomyces genome is essential for the production of novel biochemicals from secondary metabolite biosynthetic gene clusters (smBGCs). Despite many efforts to understand the regulation of transcription initiation in smBGCs, information on the regulation of transcription termination and posttranscriptional processing remains scarce. In this study, we identified the transcriptional regulatory elements in β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27064 by determining a total of 1,427 transcript 3′-end positions (TEPs) using the term-seq method. Termination of transcription was governed by three classes of TEPs, of which each displayed unique sequence features. The data integration with transcription start sites and transcriptome data generated 1,648 transcription units (TUs) and 610 transcription unit clusters (TUCs). TU architecture showed that the transcript abundance in TU isoforms of a TUC was potentially affected by the sequence context of their TEPs, suggesting that the regulatory elements of TEPs could control the transcription level in additional layers. We also identified TU features of a xenobiotic response element (XRE) family regulator and DUF397 domain-containing protein, particularly showing the abundance of bidirectional TEPs. Finally, we found that 189 noncoding TUs contained potential cis- and trans-regulatory elements that played a major role in regulating the 5′ and 3′ UTR. These findings highlight the role of transcriptional regulatory elements in transcription termination and posttranscriptional processing in Streptomyces sp. IMPORTANCE Streptomyces sp. is a great source of bioactive secondary metabolites, including antibiotics, antifungal agents, antiparasitic agents, immunosuppressant compounds, and other drugs. Secondary metabolites are synthesized via multistep conversions of the precursor molecules from primary metabolism, governed by multicomplex enzymes from secondary metabolite biosynthetic gene clusters. As their production is closely related with the growth phase and dynamic cellular status in response to various intra- and extracellular signals, complex regulatory systems tightly control the gene expressions related to secondary metabolism. In this study, we determined genome-wide transcript 3′-end positions and transcription units in the β-lactam antibiotic producer Streptomyces clavuligerus ATCC 27064 to elucidate the transcriptional regulatory elements in transcription termination and posttranscriptional processing by integration of multiomics data. These unique features, such as transcript 3′-end sequence, potential riboregulators, and potential 3′-untranslated region (UTR) cis-regulatory elements, can be potentially used to design engineering tools that can regulate the transcript abundance of genes for enhancing secondary metabolite production.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Alexander M. Kloosterman ◽  
Kyle E. Shelton ◽  
Gilles P. van Wezel ◽  
Marnix H. Medema ◽  
Douglas A. Mitchell

Bioinformatics-powered discovery of novel ribosomal natural products (RiPPs) has historically been hindered by the lack of a common genetic feature across RiPP classes. Herein, we introduce RRE-Finder, a method for identifying RRE domains, which are present in a majority of prokaryotic RiPP biosynthetic gene clusters (BGCs). RRE-Finder identifies RRE domains 3,000 times faster than current methods, which rely on time-consuming secondary structure prediction. Depending on user goals, RRE-Finder can operate in precision mode to accurately identify RREs present in known RiPP classes or in exploratory mode to assist with novel RiPP discovery. Employing RRE-Finder on the UniProtKB database revealed several high-confidence RREs in novel RiPP-like clusters, suggesting that many new RiPP classes remain to be discovered.


Sign in / Sign up

Export Citation Format

Share Document