scholarly journals Axillary shoot proliferation and plant regeneration in Euryodendron excelsum H. T. Chang, a critically endangered species endemic to China

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuangyan Chen ◽  
Yuping Xiong ◽  
Teng Wu ◽  
Kunlin Wu ◽  
Jaime A. Teixeira da Silva ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 712
Author(s):  
Marzena Nowakowska ◽  
Žaklina Pavlović ◽  
Marcin Nowicki ◽  
Sarah L. Boggess ◽  
Robert N. Trigiano

Helianthus verticillatus (Asteraceae), whorled sunflower, is a perennial species restricted to a few locations in the Southeastern United States. Habitat loss has caused H. verticillatus to become rare, and since 2014, it has been federally listed as an endangered species. As a part of the recovery plan for the restoration and protection of H. verticillatus, an efficient micropropagation protocol based on axillary shoot proliferation was developed. Various concentrations of 6-benzylaminopurine (BAP; 0 to 4.44 µM) were examined for their morphogenetic potential in the regeneration of six genotypes of H. verticillatus from the nodal explants derived from greenhouse-grown plants. Both the BAP concentration and genotype had significant effects on the regeneration capacity of H. verticillatus. Although the induced buds were observed on ½-strength Murashige and Skoog medium without plant growth regulators, a higher rate of induction and bud development were achieved on media with either 0.88 or 2.22 µM BAP, regardless of the genotype. Successful rooting of the induced shoots was achieved within four weeks after the transfer from the induction medium to the fresh ½-strength MS medium, but the rooting efficiency was dependent on the plant’s genetic background. Regenerated plantlets, with well-developed shoots and roots, were acclimatized successfully to greenhouse conditions with a 97% survival rate. Simple sequence repeats (SSRs) markers were employed to assess the genetic uniformity of the micropropagated plants of H. verticillatus. No extraneous bands were detected between regenerants and their respective donor plants, confirming the genetic fidelity and stability of regenerated plants. To our knowledge, the protocol developed in this study is the first such report for this endangered species.


Author(s):  
Akshay Tanna ◽  
Daniel Fernando ◽  
Ramajeyam Gobiraj ◽  
Buddhi M. Pathirana ◽  
Sahan Thilakaratna ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 220
Author(s):  
Michele Bertoni Mann ◽  
Janira Prichula ◽  
Ícaro Maia Santos de Castro ◽  
Juliana Mello Severo ◽  
Michelle Abadie ◽  
...  

Melanophryniscus admirabilis (admirable red-belly toad) is a microendemic and critically endangered species found exclusively along 700 m of the Forqueta River, in a fragment of the Atlantic Forest of southern Brazil. One of the greatest concerns regarding the conservation of this species is the extensive use of pesticides in areas surrounding their natural habitat. In recent years, the adaptation and persistence of animal species in human-impacted environments have been associated with microbiota. Therefore, the present study aimed to characterize the oral bacterial community of wild M. admirabilis and to address the question of how this community might contribute to this toad’s adaptation in the anthropogenic environment as well as its general metabolic capabilities. A total of 11 oral samples collected from wild M. admirabilis were characterized and analyzed via high-throughput sequencing. Fragments of the 16S rRNA variable region 4 (V4) were amplified, and sequencing was conducted using an Ion Personal Genome Machine (PGM) System with 316 chips. A total of 181,350 sequences were obtained, resulting in 16 phyla, 34 classes, 39 orders, and 77 families. Proteobacteria dominated (53%) the oral microbiota of toads, followed by Firmicutes (18%), Bacteroidetes (17%), and Actinobacteria (5%). No significant differences in microbial community profile from among the samples were reported, which suggests that the low dietary diversity observed in this population may directly influence the bacterial composition. Inferences of microbiome function were performed using PICRUSt2 software. Important pathways (e.g., xenobiotic degradation pathways for pesticides and aromatic phenolic compounds) were detected, which suggests that the bacterial communities may serve important roles in M. admirabilis health and survival in the anthropogenic environment. Overall, our results have important implications for the conservation and management of this microendemic and critically endangered species.


Sign in / Sign up

Export Citation Format

Share Document