scholarly journals Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lu Chen ◽  
Yong Chen ◽  
Mingming Zhao ◽  
Lemin Zheng ◽  
Dongsheng Fan

Abstract To compare the plasma concentrations of trimethylamine N-oxide (TMAO) and its precursors in amyotrophic lateral sclerosis (ALS) patients, their spouses and healthy controls and to find associations between gut microbiota metabolites and ALS. ALS patients were recruited at Peking University Third Hospital from January 2015 to December 2018. Information was collected from their spouses at the same time. Age and gender matched healthy controls were recruited from individuals who visited the physical examination center for health checkups. Blood samples were collected after at least 4 h of fasting. Concentrations of the metabolites were quantified using stable isotope dilution liquid chromatography–tandem mass spectrometry. Group differences were analyzed using parametric and nonparametric tests, as appropriate. In this study, 160 patients with ALS were recruited. In these patients, 63 were compared with their spouses, 148 were compared with age and gender matched controls, and 60 were compared with both their spouses and heathy controls in the same time. The carnitine concentration was significantly higher in patients than in their spouses, while there were no significant differences in the concentrations of other metabolites. The carnitine and betaine concentrations were higher, while the choline, TMAO and butyrobetaine concentrations were lower in ALS than in healthy controls. The concentrations of the metabolites in the spouses were more similar to the ALS patients rather than to the healthy controls. In the ALS group, the plasma concentrations of carnitine, betaine, choline and TMAO were inversely related to the severity of upper motor neuron impairment. The TMAO metabolic pathway of the gut microbiota is disturbed in both ALS patients and their spouses, which might suggest that the changes in the gut microbiota occurred before disease onset. The negative correlations between the involvement of UMNs and the concentrations of the metabolites might suggest that the inhibition of this metabolic pathway might lead to a better prognosis in ALS patients.

2020 ◽  
Vol 11 ◽  
Author(s):  
Jordi Caplliure-Llopis ◽  
Dolores Escrivá ◽  
María Benlloch ◽  
José Enrique de la Rubia Ortí ◽  
José María Estrela ◽  
...  

Objective: Musculoskeletal functional deterioration in Amyotrophic lateral sclerosis (ALS) is associated with an increase in bone fractures. The purpose of this study was to evaluate the influence of sex, ALS type, on bone quality in patients with ALS compared to healthy controls. The impact on bone health of the clinical status and some metabolic parameters was also analyzed in ALS patients.Methods: A series of 33 voluntary patients with ALS, and 66 healthy individuals matched in sex and age underwent assessment of bone mass quality using quantitative ultrasound (QUS) of the calcaneus. Ultrasonic broadband attenuation (BUA), the speed of sound (SOS), stiffness index and T-score were measured. Bone mineral density (BMD) was estimated using standard equations. Apart from fat and muscle mass percentage determinations, clinical baseline measures in ALS patients included ALSFRS-R score, Barthel index for activities of daily living, pulmonary function measured using FVC, and muscular strength assessed by a modified MRC grading scale. Laboratory tests included serum calcium, 25-HO-cholecalciferol (Vitamin D), alkaline phosphatase (ALP), T4 and TSH.Results: All bone parameters evaluated were statistically significant lower in ALS patients than in healthy controls. ALS females showed significantly lower bone parameters than healthy females. According to the estimated BMD, there were 25 ALS patients (75.8%) and 36 (54.5%) healthy individuals showing an osteoporotic profile (BMD <0.700 g/cm2). Only 16.7% of the ALS females had T-scores indicative of healthy bones. There was no correlation between any of the clinical parameters analyzed and the bone QUS measurements. Vitamin D and TSH levels positively correlated with all the bone parameters.Conclusions: This study confirms that ALS patients, particularly females, exhibited deteriorated bone health as compared to healthy individuals. These structural bone changes were independent of ALS subtype and clinical status. Bone health in ALS patients seems to be related to certain metabolic parameters such as Vitamin D and TSH levels.


2017 ◽  
Vol 75 (5) ◽  
pp. 272-276 ◽  
Author(s):  
Marcelo Chaves ◽  
Mariela Bettini ◽  
Maria Cecilia Fernandez ◽  
Maria Jose Garcia Basalo ◽  
Juan Ignacio Rojas ◽  
...  

ABSTRACT The objective of this preliminary study was to correlate diffusion tensor imaging (DTI) alterations with the cognitive profile of patients with amyotrophic lateral sclerosis (ALS). Methods This was a case-control study conducted from December 1, 2012 to December 1, 2014. Clinical and demographic data were recorded. A neuropsychological test battery adapted to ALS patients was used. An MRI with DTI was performed in all patients and fractional anisotropy (FA) was analyzed in the white matter using the tract based spatial statistics program. Results Twenty-four patients with ALS (15 females, mean age 66.9 + -2.3) and 13 healthy controls (four females, average age 66.9 + - 2) were included. The DTI showed white matter damage in ALS patients vs. healthy controls (p < 0.001). Discussion In our preliminary study the alterations of white matter in DTI were significantly associated with cognitive impairment in patients with ALS.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qiuli Zhang ◽  
Cuiping Mao ◽  
Jiaoting Jin ◽  
Chen Niu ◽  
Lijun Bai ◽  
...  

Conflicting findings have been reported regarding the lateralized brain abnormality in patients with amyotrophic lateral sclerosis (ALS). In this study, we aimed to investigate the probable lateralization of gray matter (GM) atrophy in ALS patients. We focused on the relationship between the asymmetry in decreased GM volume and the side of disease onset in patients with limb-onset. Structural imaging evaluation of normalized atrophy (SIENAX) and voxel-based morphometry (VBM) were used to assess differences in global and local brain regions in patients with heterogeneous body onset and subgroups with different side of limb-onset. We found global brain atrophy and GM losses in the frontal and parietal areas in each patient group as well as left predominant GM losses in the total cohort. The intriguing findings in subgroup analyses demonstrated that the motor cortex in the contralateral hemisphere of the initially involved limb was most affected. We also found that regional brain atrophy was related to disease progression rate. Our observations suggested that side of limb-onset can predict laterality of GM loss in ALS patients and disease progression correlates with the extent of cortical abnormality.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052199222
Author(s):  
Meng-Yu Liu ◽  
Zhi-Ye Chen ◽  
Jin-Feng Li ◽  
Hua-Feng Xiao ◽  
Lin Ma

Objective To evaluate alterations in phase-shift values in the gray matter of patients with amyotrophic lateral sclerosis (ALS) using susceptibility-weighted imaging (SWI). Methods Twenty patients with definite or probable ALS and 19 age- and sex-matched healthy controls were enrolled. SWI was performed using a 3.0 T magnetic resonance imaging scanner. Phase-shift values were measured in corrected phase images using regions of interest, which were placed on the bilateral precentral gyrus, frontal cortex, caudate nucleus, globus pallidus, and putamen. Results Phase-shift values of the precentral gyrus were significantly lower in ALS patients (−0.176 ± 0.050) than in the control group (−0.119 ± 0.016) on SWI. The average phase-shift values of the frontal cortex, caudate nucleus, globus pallidus, and putamen in ALS patients (−0.089 ± 0.023, −0.065 ± 0.016, −0.336 ± 0.191, and −0.227 ± 0.101, respectively) were not significantly different from those in the healthy controls (−0.885 ± 0.015, −0.079 ± 0.018, −0.329 ± 0.136, and −0.229 ± 0.083, respectively). Conclusions Compared with healthy controls, ALS patients had a lower phase-shift value in the precentral gyrus, which may be related to abnormal iron overload. Thus, SWI is a potential method for identifying ALS patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael MacLean ◽  
Judyta Juranek ◽  
Swetha Cuddapah ◽  
Raquel López-Díez ◽  
Henry H. Ruiz ◽  
...  

Abstract Background Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. Methods We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. Results Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. Conclusions Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Haining Li ◽  
Qiuli Zhang ◽  
Qianqian Duan ◽  
Jiaoting Jin ◽  
Fangfang Hu ◽  
...  

IntroductionThe brainstem is an important component in the pathology of amyotrophic lateral sclerosis (ALS). Although neuroimaging studies have shown multiple structural changes in ALS patients, few studies have investigated structural alterations in the brainstem. Herein, we compared the brainstem structure between patients with ALS and healthy controls.MethodsA total of 33 patients with ALS and 33 healthy controls were recruited in this study. T1-weighted and diffusion tensor imaging (DTI) were acquired on a 3 Tesla magnetic resonance imaging (3T MRI) scanner. Volumetric and vertex-wised approaches were implemented to assess the differences in the brainstem’s morphological features between the two groups. An atlas-based region of interest (ROI) analysis was performed to compare the white matter integrity of the brainstem between the two groups. Additionally, a correlation analysis was used to evaluate the relationship between ALS clinical characteristics and structural features.ResultsVolumetric analyses showed no significant difference in the subregion volume of the brainstem between ALS patients and healthy controls. In the shape analyses, ALS patients had a local abnormal surface contraction in the ventral medulla oblongata and ventral pons. Compared with healthy controls, ALS patients showed significantly lower fractional anisotropy (FA) in the left corticospinal tract (CST) and bilateral frontopontine tracts (FPT) at the brainstem level, and higher radial diffusivity (RD) in bilateral CST and left FPT at the brainstem level by ROI analysis in DTI. Correlation analysis showed that disease severity was positively associated with FA in left CST and left FPT.ConclusionThese findings suggest that the brainstem in ALS suffers atrophy, and degenerative processes in the brainstem may reflect disease severity in ALS. These findings may be helpful for further understanding of potential neural mechanisms in ALS.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
David Czell ◽  
Christoph Neuwirth ◽  
Markus Weber ◽  
Sabine Sartoretti-Schefer ◽  
Andreas Gutzeit ◽  
...  

Objective. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with involvement of the upper and lower motor neurons. Since the loss of fine motor skills is one of the earliest signs of ALS, the hypothesis was tested if the nine hole PEG test (NHPT) and transcranial magnet stimulation (TMS) with resting-motor threshold (RMT) could be useful in monitoring disease progression. Methods. We examined 28 ALS patients and 27 age-matched healthy controls. ALS patients and healthy controls underwent the nine hole peg test (NHPT) and TMS with RMT. Measurements in patients were repeated after three and six months. Results. At baseline, the median NHPT durations were 1,4-fold longer (p<0.001), and TMS scores showed a significant 0.8-fold smaller score in ALS patients compared with healthy controls (p<0.001). The comparison of three and six months versus baseline revealed significant differences for NHPT durations and ALSFRS-R in patients, whereas TMS scores did not significantly differ in the patients. Conclusion. NHPT seems to be a good tool to evaluate dexterity of the hand and the progression of the disease in ALS patients. TMS RMT to the hand muscles seems to be poorly qualified to evaluate the dexterity of the hand function and the course of the disease.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 230 ◽  
Author(s):  
Mark Kindy ◽  
Paul Lupinacci ◽  
Raymond Chau ◽  
Tony Shum ◽  
Dorothy Ko

Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that lacks effective treatment options. Genervon has discovered and developed GM604 (GM6) as a potential ALS therapy. GM6 has been modeled upon an insulin receptor tyrosine kinase binding motoneuronotrophic factor within the developing central nervous system. Methods This was a 2-center phase 2A, randomized, double-blind, placebo-controlled pilot trial with 12 definite ALS patients diagnosed within 2 years of disease onset. Patients received 6 doses of GM604 or placebo, administered as slow IV bolus injections (3x/week, 2 consecutive weeks). Objectives were to assess the safety and efficacy of GM604 based on ALSFRS-R, FVC and selected biomarkers (TDP-43, Tau and SOD1, pNFH). This report also includes results of compassionate treatment protocol GALS-C for an advanced ALS patient. Results Definite ALS patients were randomized to one of two treatment groups (GM604, n = 8; placebo, n = 4). 2 of 8 GM604-treated patients exhibited mild rash, but otherwise adverse event frequency was similar in treated and placebo groups. GM604 slowed functional decline (ALSFRS-R) when compared to a historical control (P = 0.005). At one study site, a statistically significant difference between treatment and control groups was found when comparing changes in respiratory function (FVC) between baseline and week 12 (P = 0.027). GM604 decreased plasma levels of key ALS biomarkers relative to the placebo group (TDP-43, P = 0.008; Tau, P = 0.037; SOD1, P = 0.009). The advanced ALS patient in compassionate treatment demonstrated improved speech, oral fluid consumption, mouth suction with GM604 treatment and biomarker improvements. Conclusions We observed favorable shifts in ALS biomarkers and improved functional measures during the Phase 2A study as well as in an advanced ALS patient. Although a larger trial is needed to confirm these findings, the present data are encouraging and support GM604 as an ALS drug candidate.


2016 ◽  
Vol 33 (S1) ◽  
pp. S197-S197
Author(s):  
D. Guinart ◽  
D. Bergé ◽  
A. Mané ◽  
L. Galindo ◽  
O. Vilarroya ◽  
...  

IntroductionA significant cortical thinning has been repeatedly observed in adult-onset first-episode schizophrenia patients compared to healthy controls, mostly in medial and inferior prefrontal cortices. However, it is yet unclear whether all these replicated alterations are related to any particular clinical feature.ObjectivesThis study aimed to investigate differences of cortical thickness in a sample of first-episode, drug-naive psychotic patients and age- and gender-matched healthy controls and explore clinical correlates of these parameters regarding negative symptoms.MethodsHigh-resolution T1-weighted images were acquired from 23 antipsychotic-naive, first-episode psychotic patients and 26 age-matched healthy comparison subjects. Clinical features were measured with the negative subscale of the Positive and Negative Syndrome Scale (PANSS) at baseline and after a 2-month follow-up period.ResultsNo differences were found regarding age or gender when comparing patients and controls. We found a significant cortical thinning in the left medial orbitofrontal cortex and in the right lateral orbitofrontal cortex in patients compared to healthy age- and gender-matched controls. Regarding clinical performance, no correlation was found at baseline between left medial orbitofrontal nor right lateral ortitofrontal cortical thickness and scores of the negative subscale of the PANSS. However, at the 2-month evaluation clinical performances were significantly associated to the left medial orbitofrontal cortical thickness values.ConclusionsCortical thickness alterations in prefontal cortex appear to be present at disease onset and these alterations may relate to clinical outcome. However, our findings must be considered just as exploratory. Larger longitudinal studies may help characterize, replicate and consolidate these findings.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1195
Author(s):  
Stefano Ferrea ◽  
Frederick Junker ◽  
Mira Korth ◽  
Kai Gruhn ◽  
Torsten Grehl ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder clinically characterized by muscle atrophy and progressive paralysis. In addition to the classical ALS affecting both the upper and lower motoneurons (UMN and LMN), other subtypes with the predominant (or even exclusive) affection of the UMN or LMN have been identified. This work sought to detect specific patterns of cortical brain atrophy in the UMN and LMN phenotypes to distinguish these two forms from the healthy state. Methods: Using high-resolution structural MRI and cortical thickness analysis, 38 patients with a diagnosis of ALS and predominance of either the UMN (n = 20) or the LMN (n = 18) phenotype were investigated. Results: Significant cortical thinning in the temporal lobe was found in both the ALS groups. Additionally, UMN patients displayed a significant thinning of the cortical thickness in the pre- and postcentral gyrus, as well as the paracentral lobule. By applying multivariate analyses based on the cortical thicknesses of 34 brain regions, ALS patients with either a predominant UMN or LMN phenotype were distinguished from healthy controls with an accuracy of 94% and UMN from LMN patients with an accuracy of 75%. Conclusions: These findings support previous hypothesis that neural degeneration in ALS is not confined to the sole motor regions. In addition, the amount of cortical thinning in the temporal lobe helps to distinguish ALS patients from healthy controls, that is, to support or discourage the diagnosis of ALS, while the cortical thickness of the precentral gyrus specifically helps to distinguish the UMN from the LMN phenotype.


Sign in / Sign up

Export Citation Format

Share Document