scholarly journals Alternative splicing of MR1 regulates antigen presentation to MAIT cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gitanjali A. Narayanan ◽  
Abhinav Nellore ◽  
Jessica Tran ◽  
Aneta H. Worley ◽  
Erin W. Meermeier ◽  
...  

Abstract Mucosal Associated Invariant T (MAIT) cells can sense intracellular infection by a broad array of pathogens. These cells are activated upon encountering microbial antigen(s) displayed by MR1 on the surface of an infected cell. Human MR1 undergoes alternative splicing. The full-length isoform, MR1A, can activate MAIT cells, while the function of the isoforms, MR1B and MR1C, are incompletely understood. In this report, we sought to characterize the expression and function of these splice variants. Using a transcriptomic analysis in conjunction with qPCR, we find that that MR1A and MR1B transcripts are widely expressed. However only MR1A can present mycobacterial antigen to MAIT cells. Coexpression of MR1B with MR1A decreases MAIT cell activation following bacterial infection. Additionally, expression of MR1B prior to MR1A lowers total MR1A abundance, suggesting competition between MR1A and MR1B for either ligands or chaperones required for folding and/or trafficking. Finally, we evaluated CD4/CD8 double positive thymocytes expressing surface MR1. Here, we find that relative expression of MR1A/MR1B transcript is associated with the prevalence of MR1 + CD4/CD8 cells in the thymus. Our results suggest alternative splicing of MR1 represents a means of regulating MAIT activation in response to microbial ligand(s).

2019 ◽  
Author(s):  
Gitanjali A. Narayanan ◽  
Abhinav Nellore ◽  
Jessica G. Tran ◽  
Aneta H. Worley ◽  
Erin W. Meermeier ◽  
...  

AbstractMucosal Associated Invariant T (MAIT) cells can sense intracellular infection by a broad array of pathogens. These cells are activated upon encountering microbial antigen(s) displayed by MR1 on the surface of an infected cell. Human MR1 undergoes alternative splicing. The full length isoform, MR1A, can activate MAIT cells, while the function of the isoforms, MR1B and MR1C, are not well characterized.In this report, we sought to characterize these splice variants. Using a transcriptomic analysis in conjunction with qPCR, we find that that MR1A and MR1B transcripts are widely expressed. Despite the widespread expression of MR1A and MR1B, only MR1A can present mycobacterial antigen to MAIT cells. Coexpression of MR1B with MR1A serves to decrease MAIT cell activation following bacterial infection. However, expression of MR1B prior to MR1A lowers total MR1A abundance, suggesting competition between MR1A and MR1B for either ligands or chaperones required for folding and/or trafficking. Finally, we evaluated CD4/CD8 double positive thymocytes expressing surface MR1. Relative MR1A/MR1B expression in MR1-expressing thymocytes is associated with their prevalence.Our results suggest alternative splicing of MR1 represents a means of regulating MAIT activation in response to microbial ligand.FundingThis work was supported by NIH T32HL083808 (EK, GAN, EM), VA Merit Award I01CX001562 (MJH), NIH R01AI29976 (MJH), NIH R01AI048090 (DML), NIH R21AI124225-01A1 (FT) and VA Merit Award I01BX000533 (DML). The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.


2020 ◽  
Vol 21 (17) ◽  
pp. 6118 ◽  
Author(s):  
Marianna Szczypka

Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.


Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4383-4391 ◽  
Author(s):  
Adi Gilboa-Geffen ◽  
Paul P. Lacoste ◽  
Lilach Soreq ◽  
Geraldine Cizeron-Clairac ◽  
Rozen Le Panse ◽  
...  

Abstract Cholinergic signaling and acetylcholinesterase (AChE) influence immune response and inflammation. Autoimmune myasthenia gravis (MG) is mediated by antibodies to the acetylcholine receptor and current therapy is based on anti-AChE drugs. MG is associated with thymic hyperplasia, showing signs of inflammation. The objectives of this study were to analyze the involvement of AChE variants in thymic hyperplasia. We found lower hydrolytic activities in the MG thymus compared with adult controls, accompanied by translocation of AChE-R from the cytoplasm to the membrane and increased expression of the signaling protein kinase PKC-βII. To explore possible causal association of AChE-R changes with thymic composition and function, we used an AChE-R transgenic model and showed smaller thymic medulla compared with strain-matched controls, indicating that AChE-R overexpression interferes with thymic differentiation mechanisms. Interestingly, AChE-R transgenic mice showed increased numbers of CD4+CD8+ cells that were considerably more resistant in vitro to apoptosis than normal thymocytes, suggesting possibly altered positive selection. We further analyzed microarray data of MG thymic hyperplasia compared with healthy controls and found continuous and discrete changes in AChE-annotated GO categories. Together, these findings show that modified AChE gene expression and properties are causally involved in thymic function and development.


2021 ◽  
Author(s):  
G. Aaron Holling ◽  
Anand P Sharda ◽  
Mackenzie M Honikel ◽  
Caitlin M James ◽  
Shivana M Lightman ◽  
...  

CD8 T cell activation prompts extensive transcriptome remodeling underlying effector differentiation and function. Regulation of transcriptome composition by the mitogen-inducible nuclear cap-binding complex adaptor protein ARS2 has critical cell type-specific consequences, including thymic T cell survival. Here we show that ARS2 was upregulated by CD28 during activation of peripheral T cells, was essential for anti-tumor immunity, and facilitated T cell activation-induced alternative splicing. The novel splicing function of ARS2 was mediated at least in part by recruitment of splicing factors to nascent transcripts including the M2 isoform of pyruvate kinase (Pkm2), a key determinant of ARS2 function in CD8 T cells. Notably, ARS2-directed Pkm2 splicing occurred days after stimulation of PI3K-indepdendent CD28 signaling and increased glycolysis beyond levels determined by PI3K signaling during T cell priming. Thus, ARS2-directed Pkm2 splicing represents a mechanism by which CD28 drives glycolytic metabolism, allowing for optimal effector cytokine production and T cell anti-tumor immunity.


2013 ◽  
Vol 201 (7) ◽  
pp. 1037-1051 ◽  
Author(s):  
Stefan Strack ◽  
Theodore J. Wilson ◽  
J. Thomas Cribbs

Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate–hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excluding the second alternative exon (x01) localized to and copurified with microtubule bundles as dynamic polymers that resemble fission complexes on mitochondria. A major isoform in immune cells, Drp1-x01 required oligomeric assembly and Arg residues in alternative exon 3 for microtubule targeting. Drp1-x01 stabilized and bundled microtubules and attenuated staurosporine-induced mitochondrial fragmentation and apoptosis. Phosphorylation of a conserved Ser residue adjacent to the microtubule-binding exon released Drp1-x01 from microtubules and promoted mitochondrial fragmentation in a splice form–specific manner. Phosphorylation by Cdk1 contributed to dissociation of Drp1-x01 from mitotic microtubules, whereas Cdk5-mediated phosphorylation modulated Drp1-x01 targeting to interphase microtubules. Thus, alternative splicing generates a latent, cytoskeletal pool of Drp1 that is selectively mobilized by cyclin-dependent kinase signaling.


2020 ◽  
Vol 16 (34) ◽  
pp. 2853-2861
Author(s):  
Yanli Li ◽  
Rui Yang ◽  
Limo Chen ◽  
Sufang Wu

CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


Sign in / Sign up

Export Citation Format

Share Document