scholarly journals Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shiv Kumar ◽  
Zobia Umair ◽  
Vijay Kumar ◽  
Santosh Kumar ◽  
Unjoo Lee ◽  
...  

Abstract Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.

2012 ◽  
Vol 58 (6) ◽  
pp. 703-708 ◽  
Author(s):  
Mrittika Sengupta ◽  
Vaibhav Jain ◽  
Brian J. Wilkinson ◽  
Radheshyam K. Jayaswal

Transcriptional profiling of Staphylococcus aureus treated with cell wall-active antibiotics identified the 2-component system, VraSR, as one of the key players in response to antibiotic stress. Although it has been shown that a number of genes are regulated by the VraSR system, it has not been shown which genes are under direct VraSR regulation and which genes are not. In this study, chromatin immunoprecipitation techniques were used to identify the genes which are regulated by the direct interaction of VraR with their promoter regions. The results showed for the first time, that the VraSR mediated regulation of cell wall biosynthesis-associated genes, pbp2, murZ, and sgtB are facilitated by the direct binding of VraR to their respective promoters. Conversely, fmtA, indicated previously to be under VraSR regulation did not exhibit direct regulation by the binding of VraR to its promoter. The VraSR system plays a very important role in antibiotic resistance against cell wall-active antibiotics, and hence, it is essential to understand its complete regulatory mechanism.


2021 ◽  
Vol 7 (7) ◽  
pp. eabf1798
Author(s):  
A. Murashima-Suginami ◽  
H. Kiso ◽  
Y. Tokita ◽  
E. Mihara ◽  
Y. Nambu ◽  
...  

Uterine sensitization–associated gene-1 (USAG-1) deficiency leads to enhanced bone morphogenetic protein (BMP) signaling, leading to supernumerary teeth formation. Furthermore, antibodies interfering with binding of USAG-1 to BMP, but not lipoprotein receptor–related protein 5/6 (LRP5/6), accelerate tooth development. Since USAG-1 inhibits Wnt and BMP signals, the essential factors for tooth development, via direct binding to BMP and Wnt coreceptor LRP5/6, we hypothesized that USAG-1 plays key regulatory roles in suppressing tooth development. However, the involvement of USAG-1 in various types of congenital tooth agenesis remains unknown. Here, we show that blocking USAG-1 function through USAG-1 knockout or anti–USAG-1 antibody administration relieves congenital tooth agenesis caused by various genetic abnormalities in mice. Our results demonstrate that USAG-1 controls the number of teeth by inhibiting development of potential tooth germs in wild-type or mutant mice missing teeth. Anti–USAG-1 antibody administration is, therefore, a promising approach for tooth regeneration therapy.


2008 ◽  
Vol 19 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Yasuhiko Koga ◽  
Mitsuo Ikebe

Myosin II phosphorylation–dependent cell motile events are regulated by myosin light-chain (MLC) kinase and MLC phosphatase (MLCP). Recent studies have revealed myosin phosphatase targeting subunit (MYPT1), a myosin-binding subunit of MLCP, plays a critical role in MLCP regulation. Here we report the new regulatory mechanism of MLCP via the interaction between 14-3-3 and MYPT1. The binding of 14-3-3β to MYPT1 diminished the direct binding between MYPT1 and myosin II, and 14-3-3β overexpression abolished MYPT1 localization at stress fiber. Furthermore, 14-3-3β inhibited MLCP holoenzyme activity via the interaction with MYPT1. Consistently, 14-3-3β overexpression increased myosin II phosphorylation in cells. We found that MYPT1 phosphorylation at Ser472 was critical for the binding to 14-3-3. Epidermal growth factor (EGF) stimulation increased both Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase inhibitor inhibited the EGF-induced Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase specific siRNA also decreased EGF-induced Ser472 phosphorylation correlated with the decrease in MLC phosphorylation. The present study revealed a new RhoA/Rho-kinase–dependent regulatory mechanism of myosin II phosphorylation by 14-3-3 that dissociates MLCP from myosin II and attenuates MLCP activity.


Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 259-268 ◽  
Author(s):  
Birgit Baumgarth ◽  
Frank Wilco Bartels ◽  
Dario Anselmetti ◽  
Anke Becker ◽  
Robert Ros

The exopolysaccharide galactoglucan promotes the establishment of symbiosis between the nitrogen-fixing Gram-negative soil bacterium Sinorhizobium meliloti 2011 and its host plant alfalfa. The transcriptional regulator ExpG activates expression of galactoglucan biosynthesis genes by direct binding to the expA1, expG/expD1 and expE1 promoter regions. ExpG is a member of the MarR family of regulatory proteins. Analysis of target sequences of an ExpG(His)6 fusion protein in the exp promoter regions resulted in the identification of a binding site composed of a conserved palindromic region and two associated sequence motifs. Association and dissociation kinetics of the specific binding of ExpG(His)6 to this binding site were characterized by standard biochemical methods and by single-molecule spectroscopy based on the atomic force microscope (AFM). Dynamic force spectroscopy indicated a distinct difference in the kinetics between the wild-type binding sequence and two mutated binding sites, leading to a closer understanding of the ExpG–DNA interaction.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2349-2360 ◽  
Author(s):  
C.J. Lai ◽  
S.C. Ekker ◽  
P.A. Beachy ◽  
R.T. Moon

The patterns of embryonic expression and the activities of Xenopus members of the hedgehog gene family are suggestive of role in neural induction and patterning. We report that these hedgehog polypeptides undergo autoproteolytic cleavage. Injection into embryos of mRNAs encoding Xenopus banded-hedgehog (X-bhh) or the amino-terminal domain (N) demonstrates that the direct inductive activities of X-bhh are encoded by N. In addition, both N and X-bhh pattern neural tissue by elevating expression of anterior neural genes. Unexpectedly, an internal deletion of X-bhh (delta N-C) was found to block the activity of X-bhh and N in explants and to reduce dorsoanterior structures in embryos. As elevated hedgehog activity increases the expression of anterior neural genes, and as delta N-C reduces dorsoanterior structures, these complementary data support a role for hedgehog in neural induction and anteroposterior patterning.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S344
Author(s):  
Zobia Umair ◽  
Seung Hwan Lee ◽  
Jaebong Kim

Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 4919-4930 ◽  
Author(s):  
M.A. Selleck ◽  
M.I. Garcia-Castro ◽  
K.B. Artinger ◽  
M. Bronner-Fraser

To define the timing of neural crest formation, we challenged the fate of presumptive neural crest cells by grafting notochords, Sonic Hedgehog- (Shh) or Noggin-secreting cells at different stages of neurulation in chick embryos. Notochords or Shh-secreting cells are able to prevent neural crest formation at open neural plate levels, as assayed by DiI-labeling and expression of the transcription factor, Slug, suggesting that neural crest cells are not committed to their fate at this time. In contrast, the BMP signaling antagonist, Noggin, does not repress neural crest formation at the open neural plate stage, but does so if injected into the lumen of the closing neural tube. The period of Noggin sensitivity corresponds to the time when BMPs are expressed in the dorsal neural tube but are down-regulated in the non-neural ectoderm. To confirm the timing of neural crest formation, Shh or Noggin were added to neural folds at defined times in culture. Shh inhibits neural crest production at early stages (0-5 hours in culture), whereas Noggin exerts an effect on neural crest production only later (5-10 hours in culture). Our results suggest three phases of neurulation that relate to neural crest formation: (1) an initial BMP-independent phase that can be prevented by Shh-mediated signals from the notochord; (2) an intermediate BMP-dependent phase around the time of neural tube closure, when BMP-4 is expressed in the dorsal neural tube; and (3) a later pre-migratory phase which is refractory to exogenous Shh and Noggin.


Bone Research ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Junichi Kushioka ◽  
Takashi Kaito ◽  
Rintaro Okada ◽  
Hiroyuki Ishiguro ◽  
Zeynep Bal ◽  
...  

AbstractTransforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2−/− mice. The rhBMP2-induced ectopic bone in Smurf2−/− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2−/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2−/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2−/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.


Sign in / Sign up

Export Citation Format

Share Document