scholarly journals Validation of reference genes for quantitative PCR in the forest pest, Ips calligraphus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Wallace ◽  
Lynne K. Rieske

AbstractThe six-spined ips, Ips calligraphus, is a North American bark beetle that can exploit most eastern North American Pinus species and can cause mortality. Biotic and abiotic disturbances weaken trees, creating breeding substrate that promotes rapid population growth. Management historically relied on silvicultural practices, but as forests become increasingly stressed, innovative management is needed. Manipulation of the cellular RNA interference (RNAi) pathway to induce gene silencing is an emerging means of insect suppression, and is effective for some bark beetles. Quantitative PCR (qPCR) is a powerful tool for analysis of gene expression, and is essential for examining RNAi. To compare gene expression among individuals, stably expressed reference genes must be validated for qPCR. We evaluated six candidate reference genes (18s, 16s, 28s, ef1a, cad, coi) for stability under biotic (beetle sex, developmental stage, and host plant), and abiotic (temperature, photoperiod, and dsRNA exposure) conditions. We used the comprehensive RefFinder tool to compare stability rankings across four algorithms. These algorithms identified 18s, 16s, and 28s as the most stably expressed. Overall, 16s and 28s were selected as reference genes due to their stability and moderate expression levels, and can be used for I. calligraphus gene expression studies using qPCR, including those evaluating RNAi.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1272
Author(s):  
Judit Tajti ◽  
Magda Pál ◽  
Tibor Janda

Oat (Avena sativa L.) is a widely cultivated cereal with high nutritional value and it is grown mainly in temperate regions. The number of studies dealing with gene expression changes in oat continues to increase, and to obtain reliable RT-qPCR results it is essential to establish and use reference genes with the least possible influence caused by experimental conditions. However, no detailed study has been conducted on reference genes in different tissues of oat under diverse abiotic stress conditions. In our work, nine candidate reference genes (ACT, TUB, CYP, GAPD, UBC, EF1, TBP, ADPR, PGD) were chosen and analysed by four statistical methods (GeNorm, Normfinder, BestKeeper, RefFinder). Samples were taken from two tissues (leaves and roots) of 13-day-old oat plants exposed to five abiotic stresses (drought, salt, heavy metal, low and high temperatures). ADPR was the top-rated reference gene for all samples, while different genes proved to be the most stable depending on tissue type and treatment combinations. TUB and EF1 were most affected by the treatments in general. Validation of reference genes was carried out by PAL expression analysis, which further confirmed their reliability. These results can contribute to reliable gene expression studies for future research in cultivated oat.


2018 ◽  
Vol 120 ◽  
pp. 22-23
Author(s):  
D. Benak ◽  
D. Sotakova ◽  
J. Neckar ◽  
F. Kolar ◽  
M. Hlavackova

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorota M. Krzyżanowska ◽  
Anna Supernat ◽  
Tomasz Maciąg ◽  
Marta Matuszewska ◽  
Sylwia Jafra

Abstract Reverse transcription quantitative PCR (RT-qPCR), a method of choice for quantification of gene expression changes, requires stably expressed reference genes for normalization of data. So far, no reference genes were established for the Alphaproteobacteria of the genus Ochrobactrum. Here, we determined reference genes for gene expression studies in O. quorumnocens A44. Strain A44 was cultured under 10 different conditions and the stability of expression of 11 candidate genes was evaluated using geNorm, NormFinder and BestKeeper. Most stably expressed genes were found to be rho, gyrB and rpoD. Our results can facilitate the choice of reference genes in the related Ochrobactrum strains. O. quorumnocens A44 is able to inactivate a broad spectrum of N-acyl homoserine lactones (AHLs) – the quorum sensing molecules of many Gram-negative bacteria. This activity is attributed to AiiO hydrolase, yet it remains unclear whether AHLs are the primary substrate of this enzyme. Using the established RT-qPCR setup, we found that the expression of the aiiO gene upon exposure to two AHLs, C6-HLS and 3OC12-HSL, does not change above the 1-fold significance threshold. The implications of this finding are discussed in the light of the role of quorum sensing-interfering enzymes in the host strains.


Sign in / Sign up

Export Citation Format

Share Document