scholarly journals MapReduce-based big data classification model using feature subset selection and hyperparameter tuned deep belief network

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surendran Rajendran ◽  
Osamah Ibrahim Khalaf ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi

AbstractIn recent times, big data classification has become a hot research topic in various domains, such as healthcare, e-commerce, finance, etc. The inclusion of the feature selection process helps to improve the big data classification process and can be done by the use of metaheuristic optimization algorithms. This study focuses on the design of a big data classification model using chaotic pigeon inspired optimization (CPIO)-based feature selection with an optimal deep belief network (DBN) model. The proposed model is executed in the Hadoop MapReduce environment to manage big data. Initially, the CPIO algorithm is applied to select a useful subset of features. In addition, the Harris hawks optimization (HHO)-based DBN model is derived as a classifier to allocate appropriate class labels. The design of the HHO algorithm to tune the hyperparameters of the DBN model assists in boosting the classification performance. To examine the superiority of the presented technique, a series of simulations were performed, and the results were inspected under various dimensions. The resultant values highlighted the supremacy of the presented technique over the recent techniques.

2021 ◽  
Vol 2136 (1) ◽  
pp. 012057
Author(s):  
Han Zhou

Abstract In the context of the comprehensive popularization of network technical services and database construction system, more and more data are used by enterprises or individuals. It is difficult for the existing technology to meet the technical analysis requirements of the development of the era of big data. Therefore, in the development of practice, we should continue to explore new technologies and methods to reasonably use big data. Therefore, on the basis of understanding the current big data technology and its system operation status, this paper designs relevant algorithms according to the big data classification model, and verifies the effectiveness of the analysis model algorithm based on practice.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 187
Author(s):  
Rattanawadee Panthong ◽  
Anongnart Srivihok

Liver cancer data always consist of a large number of multidimensional datasets. A dataset that has huge features and multiple classes may be irrelevant to the pattern classification in machine learning. Hence, feature selection improves the performance of the classification model to achieve maximum classification accuracy. The aims of the present study were to find the best feature subset and to evaluate the classification performance of the predictive model. This paper proposed a hybrid feature selection approach by combining information gain and sequential forward selection based on the class-dependent technique (IGSFS-CD) for the liver cancer classification model. Two different classifiers (decision tree and naïve Bayes) were used to evaluate feature subsets. The liver cancer datasets were obtained from the Cancer Hospital Thailand database. Three ensemble methods (ensemble classifiers, bagging, and AdaBoost) were applied to improve the performance of classification. The IGSFS-CD method provided good accuracy of 78.36% (sensitivity 0.7841 and specificity 0.9159) on LC_dataset-1. In addition, LC_dataset II delivered the best performance with an accuracy of 84.82% (sensitivity 0.8481 and specificity 0.9437). The IGSFS-CD method achieved better classification performance compared to the class-independent method. Furthermore, the best feature subset selection could help reduce the complexity of the predictive model.


Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2627
Author(s):  
Felwa Abukhodair ◽  
Wafaa Alsaggaf ◽  
Amani Tariq Jamal ◽  
Sayed Abdel-Khalek ◽  
Romany F. Mansour

Big Data are highly effective for systematically extracting and analyzing massive data. It can be useful to manage data proficiently over the conventional data handling approaches. Recently, several schemes have been developed for handling big datasets with several features. At the same time, feature selection (FS) methodologies intend to eliminate repetitive, noisy, and unwanted features that degrade the classifier results. Since conventional methods have failed to attain scalability under massive data, the design of new Big Data classification models is essential. In this aspect, this study focuses on the design of metaheuristic optimization based on big data classification in a MapReduce (MOBDC-MR) environment. The MOBDC-MR technique aims to choose optimal features and effectively classify big data. In addition, the MOBDC-MR technique involves the design of a binary pigeon optimization algorithm (BPOA)-based FS technique to reduce the complexity and increase the accuracy. Beetle antenna search (BAS) with long short-term memory (LSTM) model is employed for big data classification. The presented MOBDC-MR technique has been realized on Hadoop with the MapReduce programming model. The effective performance of the MOBDC-MR technique was validated using a benchmark dataset and the results were investigated under several measures. The MOBDC-MR technique demonstrated promising performance over the other existing techniques under different dimensions.


2020 ◽  
Vol 54 (4) ◽  
pp. 529-549
Author(s):  
Arshey M. ◽  
Angel Viji K. S.

PurposePhishing is a serious cybersecurity problem, which is widely available through multimedia, such as e-mail and Short Messaging Service (SMS) to collect the personal information of the individual. However, the rapid growth of the unsolicited and unwanted information needs to be addressed, raising the necessity of the technology to develop any effective anti-phishing methods.Design/methodology/approachThe primary intention of this research is to design and develop an approach for preventing phishing by proposing an optimization algorithm. The proposed approach involves four steps, namely preprocessing, feature extraction, feature selection and classification, for dealing with phishing e-mails. Initially, the input data set is subjected to the preprocessing, which removes stop words and stemming in the data and the preprocessed output is given to the feature extraction process. By extracting keyword frequency from the preprocessed, the important words are selected as the features. Then, the feature selection process is carried out using the Bhattacharya distance such that only the significant features that can aid the classification are selected. Using the selected features, the classification is done using the deep belief network (DBN) that is trained using the proposed fractional-earthworm optimization algorithm (EWA). The proposed fractional-EWA is designed by the integration of EWA and fractional calculus to determine the weights in the DBN optimally.FindingsThe accuracy of the methods, naive Bayes (NB), DBN, neural network (NN), EWA-DBN and fractional EWA-DBN is 0.5333, 0.5455, 0.5556, 0.5714 and 0.8571, respectively. The sensitivity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.4558, 0.5631, 0.7035, 0.7045 and 0.8182, respectively. Likewise, the specificity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.5052, 0.5631, 0.7028, 0.7040 and 0.8800, respectively. It is clear from the comparative table that the proposed method acquired the maximal accuracy, sensitivity and specificity compared with the existing methods.Originality/valueThe e-mail phishing detection is performed in this paper using the optimization-based deep learning networks. The e-mails include a number of unwanted messages that are to be detected in order to avoid the storage issues. The importance of the method is that the inclusion of the historical data in the detection process enhances the accuracy of detection.


Sign in / Sign up

Export Citation Format

Share Document