scholarly journals Uncovering the characteristics of air pollutants emission in industrial parks and analyzing emission reduction potential: case studies in Henan, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gengyu Gao ◽  
Shanshan Wang ◽  
Ruoyu Xue ◽  
Donghui Liu ◽  
He Ren ◽  
...  

AbstractIndustrial parks contribute greatly to China’s economic development while emitting huge air pollutants. It is necessary to study the characteristics of air pollutant emissions in industrial parks. In this study, emission inventories for 11 industrial parks were established. Meanwhile, the source emission and spatial distribution characteristics of the industrial park were analyzed. The cluster analysis was used to classify these parks into “4Hs”, “Mixed” and “4Ls” parks. “4Hs”, “Mixed” and “4Ls” represent that the levels of energy intensity, economic proportion of energy-intensive industries, coal proportion and pollution performance value are high, medium and low in turn. Then three emission reduction measures were set up to estimate the emission reduction potential and environmental impacts. The results show that: (1) the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs and NH3 of 11 industrial parks in 2017 were 11.2, 23.1, 30.8, 8.3, 3.5, 5.1, and 1.1 kt, respectively. (2) Power plants were the largest source of SO2 and NOx emissions, and industrial processes were the largest emission source of CO, PM10, PM2.5, VOCs and NH3. (3) “4Hs” parks with traditional energy-intensive industries as the leading industries should be the emphasis of air pollutant emission reduction. (4) Through the optimal emission reduction measures, SO2, NOx, PM10, PM2.5 and VOCs were reduced by 81, 46, 51, 46 and 77%, respectively. Environmental impact reductions include 1.6 kt SO2eq acidified gas emissions, 1.4 kt PO43−eq eutrophication substances, 4.2 kt PM10eq atmospheric particulate emissions, 7.0 kt 1,4-DCEeq human toxic substances, and 5.2 kt PM2.5 eq breathing Inorganic. This study is helpful to understand the characteristics of air pollutants emissions in industrial parks and promotes the proposal and implementation of air pollutant emissions reduction strategies.

2021 ◽  
Vol 13 (12) ◽  
pp. 6785
Author(s):  
Bing Wang ◽  
Yifan Wang ◽  
Yuqing Zhao

Since entering the industrialized era, China’s greenhouse gas emissions and air pollutant emissions have increased rapidly. China is the country with the most greenhouse gas emissions, and it is also facing serious local air pollution problems. China’s industrial sector is the largest contributor to CO2 and air pollutants. The resulting climate change and air pollution issues have caused China to face double pressures. This article uses the CO2 and comprehensive air pollutant emission data of China’s industrial sector as a starting point and uses econometric research methods to explore the synergy between China’s industrial carbon emission reduction and industrial comprehensive air pollutant emission reduction. The synergistic effect between industrial carbon emissions and industrial comprehensive air pollutant emissions has been quantified, and the transmission path of the synergistic effect has been explored. The empirical results show that there are benefits of synergistic governance between climate change and air pollution in China’s industrial sector. Every 1000 tons of carbon reduction in the industrial sector will result in 1 ton of comprehensive air pollutant reduction. The increase in R&D expenditure in the energy and power sector can significantly promote the reduction of air pollutants in the industrial sector. Increasing the intensity of environmental regulations is the main expansion path for synergy. However, in eastern, central, and western China, the synergy is not the same. Therefore, it is necessary to formulate regionally differentiated emission reduction policies. The research conclusions of this article can provide policy references for the coordinated governance of climate change and air pollution in China.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 852
Author(s):  
Yue Yu ◽  
Zhi-xin Jin ◽  
Ji-zu Li ◽  
Yu-cheng Wu ◽  
Li Jia

In China, as the major source of energy consumption and air pollutant emissions, the power industry is not only the principal force that bears the responsibility of national emission reduction targets but also a breakthrough that reflects the effectiveness of emission reduction. In this study, based on the integrated MARKAL-EFOM system (TIMES) model and scenario analysis method, a bottom-up energy system optimization model for the power industry was established, and four scenarios with different constraints were set up to predict and analyze the power demand and the energy consumption structure. Emission characteristics, emission reduction characteristics, and emission reduction cost of sulfur dioxide (SO2), nitrogen oxide (NOX), particulate matter 2.5 (PM2.5), and mercury (Hg) were quantitatively studied. Finally, for the environmentally friendly development and optimal adjustment of power production systems in China, the control path in the power industry that is conducive to the emission reduction of air pollutants was obtained, which is of great significance for the ultimate realization of climate friendliness. The results demonstrate that from 2020 to 2050, the power demand of the terminal departments will increase, with the composition significantly changed. The focus of power demand will change from industry to the service industry gradually. If no additional targeted emission reduction or adjustment policies are added in the power industry, the primary energy and air pollutant emissions will increase significantly, putting great pressure on resources and the environment. For the emission reduction of air pollutants, the promotion effect of emission reduction measures, such as the implementation and promotion of non-fossil fuels, is restricted. The power industry can introduce and maximize the best available technologies while optimizing the structure of energy consumption to realize efficient emission reduction of air pollutants and energy conservation. In 2030, emissions will reach peak values with reasonable emission reduction cost. This has the additional effect of abating energy consumption and preventing deterioration of the ecological environment, which is of profound significance for the ultimate realization of climate friendliness.


2018 ◽  
Vol 53 ◽  
pp. 04036 ◽  
Author(s):  
Cheng Jieling ◽  
Li Haibo

When vessels are berthed at ports, the air pollutants emitted by auxiliary engines will cause severe pollution to the ports and surrounding environments. In view of this situation, the author first summarizes the Chinese policies and policies of foreign countries on emission of air pollutants from vessels at berth, and then analyses the current status of and measures for control of air pollutant emission from vessels at berth. Secondly, the author analyses the environmental benefits of using shore power for better controlling air pollutant emission from vessels at berth, compares vessels using shore power with vessels using generated power in the energy conservation and emission reduction effects based on the fuel consumption rate of different auxiliary engines and current status of pollutant emission from power generation in China etc., analyses the current status of shore power application in China, estimates the energy conserved and emission reduced when shore power is used by vessels at berth. Thirdly, the author identifies the scale of electric energy replacement by, and environmental benefits of, shore power at ports in China. This paper delivers innovative approaches to the comparison between the effects of energy conservation and emission reduction based on fuel consumption rates of different auxiliary engines and estimation of conserved energy and reduced emission.


2014 ◽  
Vol 472 ◽  
pp. 904-908 ◽  
Author(s):  
Xing Chun Li ◽  
Jing Ya Wen ◽  
Jiang Long ◽  
Xian Yuan Du ◽  
Yu Li

Aiming at the harsh environmental situation at present, refinery and chemical enterprises in China are mostly of high energy consumption and high pollution enterprises, which have great emission reduction potential of atmospheric pollutants. Based on SO2and NOx produced by refinery and chemical enterprises, the emission reduction potential optimization model is established by using linear programming method, and combined environmental management policy about total amount control of atmospheric pollutants. Through the model results, the maximum pollutant emission reduction of SO2and NOx predicted through the model were 4810.69 and 1574.04 (tons), and the optimum technical schemes have been given, respectively. This model could provide not only the maximum emission reduction of the existing projects and enterprises, but also the decision support of emission reduction for refinery and chemical enterprises during "the 12thFive Year Plan".


2018 ◽  
Vol 3 (3) ◽  
pp. 152
Author(s):  
Dessy Gusnita ◽  
Dita Fatria

<p>Estimation of air pollutant emissions from non-oil and gas sources in eastern Indonesia, namely Sulawesi and Papua provinces during the period 2014 – 2016 was conducted. This paper intended to estimate the emission of three air pollutants namely NOx, SO<sub>2</sub> and CO<sub>2</sub>. The aim was to find out the amount of pollutant and greenhouse gas (<em>GHG</em>) emissions in the Sulawesi and Papua regions. The method used was the emission estimation method based on statistical data of Gross Regional Domestic Income (GRDP) in the Papua and Sulawesi regions. The results from estimation of pollutant emissions was then carried out for pollutant emissions mapping. The pollutant emission estimation showed the emission of air pollutants in Sulawesi region was higher than Papua. The mapping of emissions in Sulawesi were consisted of four provinces, namely north, central, south and southeast Sulawesi. The Papua region were consisted of Papua and west Papua provinces. The highest emission in Sulawesi region was south Sulawesi. The CO<sub>2</sub> emission in Sulawesi was increase about 23% with the detail value; 84.4 tons in 2014; 94.3 tons in 2015; and 103.7 tons in 2016. The emission of NOx during 2014 until 2016 are 0.53, 0.58 and 0.64 tons, there was an increasing in the emission of NOx around 21%. In addition, SO<sub>2</sub> emission of south Sulawesi are 0.42 tons in 2014, 0.47 tons in 2015 and 0.51 tons in 2016, increased about 21 % during the year 2014 - 2016. In the Papua region, the emission in Papua was higher than Papua Barat province. CO<sub>2</sub> emissions in Papua during 2014 -2016 were 112, 124.8 and 144.99 tons, it means the CO<sub>2</sub> was increased 29%. The emission of NOx during 2014-2016 were 0.70, 0.77 and 0.89 tons, increased around 27%. In addition, SO<sub>2</sub> emission was increase 26% with the detail value; 0.56 tons in 2014; 0.61 tons in 2015 and 0.71 tons in 2016.</p><p> </p><p><strong><em></em></strong><strong><em><br /></em></strong><em></em></p>


2021 ◽  
Author(s):  
Yao Chen ◽  
Jing Wu

Abstract As the major energy consumers, energy-intensive industries are the key players in achieving carbon emission reduction targets. Grasping the carbon emission reduction potential has a direct impact on the implementation of the carbon emission reduction policies of China. The paper builds a super-Slack Based Model(SBM) considering this undesirable output, and calculates the carbon emission efficiency. Then, the Meta-Frontier Malmquist-Luenberger productivity index (MF-MLPI) is constructed to dynamically analyse the growth rate changes of the carbon emission efficiency and the regional differences in energy-intensive industries. Furthermore, the carbon emission reduction potential of the energy-intensive industries in various economic regions of China is discussed and the conclusions are as follows: there is a big difference in the carbon emission Technology Gap Ratios (TGRs) of the energy-intensive industries in different economic regions; the growth rate of the carbon emission efficiency of energy-intensive industries shows a trend of first declining and then slowly recovering while the carbon reduction potential generally shows a trend of decreasing and then rising; and the carbon emission reduction potential in the eastern region keeps decreasing. The following is recommended: the government should rationally distribute energy-intensive industries, promote industrial structure adjustment, optimize the energy structure according to the regional industrial advantages; increase investment in R&D, promote energy technology innovation in energy-intensive industries; prioritize the promotion of carbon peaks on key emission industries and regional, formulate differentiated plans for the regions and industries with different carbon emission reduction potentials.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2719-2727
Author(s):  
Bing Qiao ◽  
Yi Chao Liu ◽  
Wei Jian He ◽  
Yu Jun Tian ◽  
Yue Li ◽  
...  

Based on methods of the fuel consumption, statistical and analogy analysis, the throughput amount method was established to calculate the emissions from port handling, and the minimum mileage method was established to estimate emissions from port cargo highway distributing. In the methods, some coefficients were used obtained by investigations: the current container handling emission factors of NOx, VOCs, CO, PM2.5 and SOx are 1.64, 0.21, 0.42, 0.01 and 0.29 t/TEU; the energy consumption of the unit throughput is 4.12 tons of standard coal per 104tons; the ratios of the unit non container cargoe handling energy consumption for coastal and inland river ports to those of container cargo are 0.631 and 0.405; the ratio of the unit non container cargoe highway distributing energy consumption to those of container cargo is 0.365. The calculation results show that the total emissions from the cargo handling and highway distributing of 2013 in China for NOx, VOCs, CO, PM2.5 and SOx are 54.365, 14.821, 24.631, 5.599 and 16.802 104tons, and the emissions from highway distributing are 4.21, 10.02, 8.24, 8.22 and 8.19 times of the emissions from port handling facilities. According to energy saving and emission reduction measures, formulas were established to calculate air pollutant emissions after the new added measures. Analyzing the real performance of the measures implemented since 2001 and predicting its trend of development, a scenario was designed, in which the Chinese port throughput continuously rises while the energy saving and emission reduction efforts gradually increase by 2020: the popularities of the energy saving measure of "oil changing to electricity" and the clean fuel measure of "oil changing to gas" reach 100% and 83%; the proportion of power plants with 95% desulfurization and denitrification reaches 100%; the energy saving and emission reduction efficiency of port cargo distributing optimization measures reaches 40%. Under this scenario, the prediction shows that during the port throughput increasing approximately 4.2 times from 2005 to 2020, the air pollutant emissions will be reduced significantly, returning to a lower level compared with 2005. The above methods and results can be used to support the decision-making and the implementation of emission reduction measures for the national, regional and port enterprises.


2019 ◽  
Vol 118 ◽  
pp. 04035
Author(s):  
Yanjie Jiang ◽  
Peilin Wu

The rapid increase of private passenger vehicles in China has brought about serious problems of CO2 and air pollutant emissions. It has important practical guiding significance to compare the effects of emission reduction policies. In this paper, the LEAP system is used as a tool with classifying the private passenger vehicles according to the heterogeneity of displacement and fuel economy. The different emission reduction policy scenarios are simulated with respective implementation time and characteristic parameters. It is found that the management target of fuel economy is difficult to be realized by existing policies. Even the most stringent emission standards are all implemented, it is also necessary to cooperate with green travel which is mainly about reducing vehicles’ annual travel distance. Although the annual increment of private passenger car is huge, however, there will be a certain downward trend in the discharge of air pollutants. On this basis, it is suggested that a policy goal of maintaining or lowering the emission level can be established. The research suggests that, on the supply side the government should continue to strengthen the management of fuel economy, improve the emission standards, boost the new energy vehicles vigorously, the energy saving vehicles under overall consideration and diesel cars carefully, while on the demand side the green travel should be encouraged at the same time.


2019 ◽  
Vol 11 (13) ◽  
pp. 3670 ◽  
Author(s):  
Qianwen Cheng ◽  
Manchun Li ◽  
Feixue Li ◽  
Haoqing Tang

Geographical environment and climate change are basic factors for spatial fluctuations in the global distribution of air pollutants. Against the background of global climate change, further investigation is needed on how meteorological characteristics and complex geographical environment variations can drive spatial air pollution variations. This study analyzed the response of air pollutant emissions to climate change and the potential effects of air pollutant emissions on human health by integrating the air pollutant emission simulation model (GAINS) with 3 versions and CMIP5. The mechanism by which meteorological characteristics and geographical matrices can drive air pollution based on monitoring data at the site-scale was also examined. We found the total global emission of major air pollutants increased 1.32 times during 1970–2010. Air pollutant emissions will increase 2.89% and 4.11% in China and developed countries when the scenario of only maximum technically feasible reductions is performed (V4a) during 2020–2050. However, it will decrease 19.33% and 6.78% respectively by taking the V5a climate scenario into consideration, and precipitation variation will contribute more to such change, especially in China. Locally, the air circulation mode that is dominated by local geographical matrices and meteorological characteristics jointly affect the dilution and diffusion of air pollutants. Therefore, natural conditions, such as climate changes, meteorological characteristics and topography, play an important role in spatial air pollutant emissions and fluctuations, and must be given more attention in the processes of air pollution control policy making.


Sign in / Sign up

Export Citation Format

Share Document