scholarly journals Spherical harmonics to quantify cranial asymmetry in deformational plagiocephaly

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Grieb ◽  
Inés Barbero-García ◽  
José Luis Lerma

AbstractCranial deformation and deformational plagiocephaly (DP) in particular affect an important percentage of infants. The assessment and diagnosis of the deformation are commonly carried by manual measurements that provide low interuser accuracy. Another approach is the use of three-dimensional (3D) models. Nevertheless, in most cases, deformation measurements are carried out manually on the 3D model. It is necessary to develop methodologies for the detection of DP that are automatic, accurate and take profit on the high quantity of information of the 3D models. Spherical harmonics are proposed as a new methodology to identify DP from head 3D models. The ideal fitted ellipsoid for each head is computed and the orthogonal distances between head and ellipsoid are obtained. Finally, the distances are modelled using spherical harmonics. Spherical harmonic coefficients of degree 2 and order − 2 are identified as the correct ones to represent the asymmetry characteristic of DP. The obtained coefficient is compared to other anthropometric deformation indexes, such as Asymmetry Index, Oblique Cranial Length Ratio, Posterior Asymmetry Index and Anterior Asymmetry Index. The coefficient of degree 2 and order − 2 with a maximum degree of 4 is found to provide better results than the commonly computed anthropometric indexes in the detection of DP.

Author(s):  
S. Artese ◽  
J. L. Lerma ◽  
J. Aznar Molla ◽  
R. M. Sánchez ◽  
R. Zinno

<p><strong>Abstract.</strong> The three-dimensional (3D) documentation and surveying of cultural heritage can be carried out following several geomatics techniques such as laser scanning and thermography in order to detect the original 3D shape after applying reverse engineering solutions. In almost all cases, the integration of data collected by different instruments is needed to achieve a successful and comprehensive 3D model of the as-built architectural shape of the historical building. This paper describes the operations carried out by the authors to determine the as-built 3D model of the Escuelas Pias Church, related namely to the dome and circular nave. After the description of the church and historical notes, attention will be driven to the indirect registration results obtained with three different laser scanning software packages, highlighting similarities and differences, and the consequences while generating meshes. The 3D model carried out will then be described and the results of some investigations with regard to the hypotheses about the design of the dome and the origin of the alterations will be presented.</p>


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


2017 ◽  
Vol 23 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Xiaotong Jiang ◽  
Xiaosheng Cheng ◽  
Qingjin Peng ◽  
Luming Liang ◽  
Ning Dai ◽  
...  

Purpose It is a challenge to print a model with the size that is larger than the working volume of a three-dimensional (3D) printer. The purpose of this paper is to present a feasible approach to divide a large model into small printing parts to fit the volume of a printer and then assemble these parts into the final model. Design/methodology/approach The proposed approach is based on the skeletonization and the minima rule. The skeleton of a printing model is first extracted using the mesh contraction and the principal component analysis. The 3D model is then partitioned preliminarily into many smaller parts using the space sweep method and the minima rule. The preliminary partition is finally optimized using the greedy algorithm. Findings The skeleton of a 3D model can effectively represent a simplified version of the geometry of the 3D model. Using a model’s skeleton to partition the model is an efficient way. As it is generally desirable to have segmentations at concave creases and seams, the cutting position should be located in the concave region. The proposed approach can partition large models effectively to well retain the integrity of meaningful parts. Originality/value The proposed approach is new in the rapid prototyping field using the model skeletonization and the minima rule. Based on the authors’ knowledge, there is no method that concerns the integrity of meaningful parts for partitioning. The proposed method can achieve satisfactory results by the integrity of meaningful parts and assemblability for most 3D models.


Author(s):  
E. A. Petrakova

It is known that the development of a three-dimensional parametric model is a creative process, since the same 3D-model can be built in various ways. In the article the methods for effective design of parametric 3D-models with the help of internal capabilities of CAD-program without the use of programming languages (macros) is developed. Using the methods and recommendations discussed in the article on the example of Autodesk Inventor functionality will allow the engineer to design parametric three-dimensional products in CAD-programs in the most rational way, reducing the number of errors. Recommendations for effective control of 3D-model parameters during creating of Assembly parts and 2D-drawings are given. Using the functionality discussed in the article will be useful for engineers using parametric modeling methods to create typical products, optimization and analysis of structures, development of their own database of standard products that are not in the library of CAD-program components.


2021 ◽  
Author(s):  
Grzegorz Świaczny

This article deals with the topic of one of the most important features of modern CAx class systems – associativity. The term refers to the ability to form relations (links) between two or more objects (in terms of their selected features), and with the consequence creating an associative (linked) three-dimensional model. The author pays special attention to the very process of creating relations between objects, as it has a key impact on the structural stability of CAD class models, and thus on their susceptibility to possible modifications. To show that not all associativity brings a positive effect, the author presents two examples of its implementation. In order to emphasize the influence of the method of linking individual elements, both examples are based on the same 3D model – a thin-walled part with a positioning pin. That means the geometric form of the default part is the same, whereas only relations of the individual objects of the 3D model change. In the first scenario, correctly defined relations between objects make that the positioning pin offset does not affect the initial design conditions. The second scenario shows an incorrect implementation of associativity, as a result of which the same operation of positioning pin offset gives non-compliance with the initial design conditions and with the consequence an undesirable change in its geometry. The article is an attempt to draw attention to the fact that the associative structure of 3D models is not always equal to the optimal solution. Only the well-thought-out nature of associativity allows to use all its advantages.


2019 ◽  
Vol 825 ◽  
pp. 19-30
Author(s):  
Tsung Chien Wu ◽  
Jiing Yih Lai ◽  
Yu Wen Tseng ◽  
Chao Yaug Liao ◽  
Ju Yi Lee

Additive manufacturing (AM) has been commonly used for the prototyping of three-dimensional (3D) models. The input model of the AM technology is a triangular model representing the surface shape of an object. The design features on a triangular model are generally not clear as the vertices are irregularly distributed. If design modification is necessary, it is difficult to segment and extract the meshes from the model. The objective of this study is to propose a method for extracting the design features on an object model by using the texture information. A 3D color model including a triangular model representing the object shape and a texture map describing the object texture is employed. The 3D model is generated by using a set of object images captured from different views surrounding the object. A texture mapping algorithm is then employed to generate the texture map corresponding to the 3D model. With both meshes and texture displayed in a texture mode, a region extraction technique is employed to extract the design features. All parts separated can then be fabricated with an AM machine, and assembled for checking the feasibility of design modification. Several products are employed to demonstrate the feasibility of the proposed technique.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 181 ◽  
Author(s):  
Dalibor Bartonek ◽  
Michal Buday

This article describes problems that occur when creating three-dimensional (3D) building models. The first problem is geometric accuracy; the next is the quality of visualization of the resulting model. The main cause of this situation is that current Computer-Aided Design (CAD) software does not have sufficient means to precision mapping the measured data of a given object in field. Therefore the process of 3D model creation is mainly a relatively high proportion of manual work when connecting individual points, approximating curves and surfaces, or laying textures on surfaces. In some cases, it is necessary to generalize the model in the CAD system, which degrades the accuracy and quality of field data. The article analyzes these problems and then recommends several variants for their solution. There are described two basic methods: using topological codes in the list of coordinates points and creating new special CAD features while using Python scripts. These problems are demonstrated on examples of 3D models in practice. These are mainly historical buildings in different locations and different designs (brick or wooden structures). These are four sacral buildings in the Czech Republic (CR): the church of saints Johns of Brno-Bystrc, the Church of St. Paraskiva in Blansko, further the Strejc’s Church in Židlochovice, and Church of St. Peter in Alcantara in Karviná city. All of the buildings were geodetically surveyed by terrestrial method while using total station. The 3D model was created in both cases in the program AUTOCAD v. 18 and MicroStation.


2021 ◽  
pp. 000348942110240
Author(s):  
Peng You ◽  
Yi-Chun Carol Liu ◽  
Rodrigo C. Silva

Objective: Microtia reconstruction is technically challenging due to the intricate contours of the ear. It is common practice to use a two-dimensional tracing of the patient’s normal ear as a template for the reconstruction of the affected side. Recent advances in three-dimensional (3D) surface scanning and printing have expanded the ability to create surgical models preoperatively. This study aims to describe a simple and affordable process to fabricate patient-specific 3D ear models for use in the operating room. Study design: Applied basic research on a novel 3D optical scanning and fabrication pathway for microtia reconstruction. Setting: Tertiary care university hospital. Methods: Optical surface scanning of the patient’s normal ear was completed using a smartphone with facial recognition capability. The Heges application used the phone’s camera to capture the 3D image. The 3D model was digitally isolated and mirrored using the Meshmixer software and printed with a 3D printer (MonopriceTM Select Mini V2) using polylactic acid filaments. Results: The 3D model of the ear served as a helpful intraoperative reference and an adjunct to the traditional 2D template. Collectively, time for imaging acquisition, editing, and fabrication was approximately 3.5 hours. The upfront cost was around $210, and the recurring cost was approximately $0.35 per ear model. Conclusion: A novel, low-cost approach to fabricate customized 3D models of the ear is introduced. It is feasible to create individualized 3D models using currently available consumer technology. The low barrier to entry raises the possibility for clinicians to incorporate 3D printing into various clinical applications.


Author(s):  
Brice Bognet ◽  
Adrien Leygue ◽  
Francisco Chinesta

Many models in polymer processing and composites manufacturing are defined in degenerated three-dimensional domains (3D), involving plate or shell geometries. The reduction of models from 3D to two-dimensional (2D) is not obvious when complex physics or particular geometries are involved. The hypotheses to be introduced for reaching this dimensionality reduction are unclear, and most of the possible proposals will have a narrow interval of validity. The only gateway is to explore new discretisation strategies able to circumvent or at least alleviate the drawbacks related to mesh-based discretisations of fully 3D models defined in plate or shell domains. Appropriate separated representation of the involved fields within the context of the proper generalised decomposition allows solving the fully 3D model by keeping a 2D characteristic computational complexity.


2018 ◽  
Vol 152 ◽  
pp. 02003
Author(s):  
Yong Leng Chuan ◽  
Elliot Andrews

Non-surgical rhinoplasty procedures which involves the use of injectable derma fillers are highly risky as patients are susceptible to side effects and complications that may cause unwanted changes in their appearance. This research explores an alternative method of non-surgical rhinoplasty for patients seeking augmentation of the nose with the use of three-dimensional (3D) printing. Most rhinoplasty procedures are conducted with the intention of enhancing the aesthetical features of the nose, a 3D model nose was designed based on the combination of the average and the ideal aesthetic parameters of the Northern European Caucasians and South Asia Chinese nose. The modelling of nose is done using the SolidWorks CAD software. An initial design was sketched in a polygon mesh form and further improved on. Different printing materials and infill densities were compared to determine the suitable printing technique. The final nose model is then printed using the Ultimaker 3D printer using Polylactic acid (PLA) with an infill density of 100% at a thickness of 1.4 mm. An inner layer to the 3D printed nose was developed for comfortable attachment of the nose model to human skin. The inner layer was fabricated using agar gelatine. Experiments were carried out to increase the strength and adhesiveness of the gelatine so that it could adhere to the human skin and the PLA surface. Tensile and adhesive strength tests were carried out to determine the suitable gel composition for the attachment of the nose to the user’s face. The key outcome from the experiments using natural gelatine was capability of gel to act as an inner layer for the temporary attachment of the 3D nose model to the human skin


Sign in / Sign up

Export Citation Format

Share Document