scholarly journals Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Ma ◽  
Li Zheng ◽  
Xiaofei Yin ◽  
Wei Gao ◽  
Bin Han ◽  
...  

AbstractIn this study, sediments were collected from two different sites in the deep-sea hydrothermal region of the South Atlantic Ocean. Two microbial enrichment cultures (H7S and H11S), which were enriched from the sediments collected at two sample sites, could effectively degrade petroleum hydrocarbons. The bacterial diversity was analyzed by high-throughput sequencing method. The petroleum degradation ability were evaluated by gas chromatography–mass spectrometry and gravimetric analysis. We found that the dominant oil-degrading bacteria of enrichment cultures from the deep-sea hydrothermal area belonged to the genera Pseudomonas, Nitratireductor, Acinetobacter, and Brevundimonas. After a 14-day degradation experiment, the enrichment culture H11S, which was obtained near a hydrothermal vent, exhibited a higher degradation efficiency for alkanes (95%) and polycyclic aromatic hydrocarbons (88%) than the enrichment culture H7S. Interestingly, pristane and phytane as biomarkers were degraded up to 90% and 91% respectively by the enrichment culture H11S, and six culturable oil-degrading bacterial strains were isolated. Acinetobacter junii strain H11S-25, Nitratireductor sp. strain H11S-31 and Pseudomonas sp. strain H11S-28 were used at a density ratio of 95:4:1 to construct high-efficiency oil-degrading consortium H. After a three-day biodegradation experiment, consortium H showed high degradation efficiencies of 74.2% and 65.7% for total alkanes and PAHs, respectively. The degradation efficiency of biomarkers such as pristane and high-molecular-weight polycyclic aromatic hydrocarbons (such as CHR) reached 84.5% and 80.48%, respectively. The findings of this study indicate that the microorganisms in the deep-sea hydrothermal area are potential resources for degrading petroleum hydrocarbons. Consortium H, which was artificially constructed, showed a highly efficient oil-degrading capacity and has significant application prospects in oil pollution bioremediation.

2003 ◽  
Vol 69 (1) ◽  
pp. 275-284 ◽  
Author(s):  
Mikael Eriksson ◽  
Erik Sodersten ◽  
Zhongtang Yu ◽  
Gunnel Dalhammar ◽  
William W. Mohn

ABSTRACT Thepotential for biodegradation of polycyclic aromatic hydrocarbons (PAHs)at low temperature and under anaerobic conditions is not wellunderstood, but such biodegradation would be very useful forremediation of polluted sites. Biodegradation of a mixture of 11different PAHs with two to five aromatic rings, each at a concentrationof 10 μg/ml, was studied in enrichment cultures inoculated withsamples of four northern soils. Under aerobic conditions, lowtemperature severely limited PAH biodegradation. After 90 days, aerobiccultures at 20°C removed 52 to 88% of the PAHs. The mostextensive PAH degradation under aerobic conditions at 7°C,53% removal, occurred in a culture from creosote-contaminatedsoil. Low temperature did not substantially limit PAH biodegradationunder nitrate-reducing conditions. Under nitrate-reducing conditions,naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene weredegraded. The most extensive PAH degradation under nitrate-reducingconditions at 7°C, 39% removal, occurred in a culturefrom fuel-contaminated Arctic soil. In separate transfer cultures fromthe above Arctic soil, incubated anaerobically at 7°C, removalof 2-methylnaphthalene and fluorene was stoichiometrically coupled tonitrate removal. Ribosomal intergenic spacer analysis suggested thatenrichment resulted in a few predominant bacterial populations,including members of the genera Acidovorax,Bordetella, Pseudomonas, Sphingomonas, andVariovorax. Predominant populations from different soils oftenincluded phylotypes with nearly identical partial 16S rRNA genesequences (i.e., same genus) but never included phylotypes withidentical ribosomal intergenic spacers (i.e., different species orsubspecies). The composition of the enriched communities appeared to bemore affected by presence of oxygen, than by temperature or source oftheinoculum.


Sign in / Sign up

Export Citation Format

Share Document