scholarly journals Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungeun Won ◽  
Wenzhou Hong ◽  
Pawjai Khampang ◽  
Darold R. Spillman ◽  
Samuels Marshall ◽  
...  

AbstractStudying the impact of antibiotic treatment on otitis media (OM), the leading cause of primary care office visits during childhood, is critical to develop appropriate treatment strategies. Tracking dynamic middle ear conditions during antibiotic treatment is not readily applicable in patients, due to the limited diagnostic techniques available to detect the smaller amount and variation of middle ear effusion (MEE) and middle ear bacterial biofilm, responsible for chronic and recurrent OM. To overcome these challenges, a handheld optical coherence tomography (OCT) system has been developed to monitor in vivo response of biofilms and MEEs in the OM-induced chinchilla model, the standard model for human OM. As a result, the formation of MEE as well as biofilm adherent to the tympanic membrane (TM) was longitudinally assessed as OM developed. Various types of MEEs and biofilms in the chinchilla model were identified, which showed comparable features as those in humans. Furthermore, the effect of antibiotics on the biofilm as well as the amount and type of MEEs was investigated with low-dose and high-dose treatment (ceftriaxone). The capability of OCT to non-invasively track and examine middle ear conditions is highly beneficial for therapeutic OM studies and will lead to improved management of OM in patients.

2009 ◽  
Vol 123 (6) ◽  
pp. 603-608 ◽  
Author(s):  
T Just ◽  
E Lankenau ◽  
G Hüttmann ◽  
H W Pau

AbstractObjective:Optical coherence tomography was used to study the stapes footplate, both in cadaveric temporal bones and during middle-ear surgery.Materials and methods:Optical coherence tomography was conducted on five temporal bone preparations (from two children and three adults) and in eight patients during middle-ear surgery. A specially equipped operating microscope with integrated spectral domain optical coherence tomography apparatus was used for standard middle-ear surgical procedures.Results:This optical coherence tomography investigation enabled in vivo visualisation and documentation of the annular ligament, the different layers of the footplate and the inner-ear structures, both in non-fixed and fixed stapes footplates. In cases of otosclerosis and tympanosclerosis, an inhomogeneous and irregularly thickened footplate was found, in contrast to the appearance of non-fixed footplates. In both fixed and non-fixed footplates, there was a lack of visualisation of the border between the footplate and the otic capsule.Conclusions:Investigation of the relatively new technology of optical coherence tomography indicated that this imaging modality may assist the ear surgeon to assess the oval window niche intra-operatively.


2013 ◽  
Vol 301 ◽  
pp. 193-200 ◽  
Author(s):  
Cac T. Nguyen ◽  
Sarah R. Robinson ◽  
Woonggyu Jung ◽  
Michael A. Novak ◽  
Stephen A. Boppart ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. 74
Author(s):  
Jeon ◽  
Kim ◽  
Jeon ◽  
Kim

Optical coherence tomography (OCT) has a micro-resolution with a penetration depth of about 2 mm and field of view of about 10 mm. This makes OCT well suited for analyzing the anatomical and internal structural assessment of the middle ear. To study the vibratory motion of the tympanic membrane (TM) and its internal structure, we developed a phase-resolved Doppler OCT system using Kasai’s autocorrelation algorithm. Doppler optical coherence tomography is a powerful imaging tool which can offer the micro-vibratory measurement of the tympanic membrane and obtain the micrometer-resolved cross-sectional images of the sample in real-time. To observe the relative vibratory motion of individual sections (malleus, thick regions, and the thin regions of the tympanic membrane) of the tympanic membrane in respect to auditory signals, we designed an experimental study for measuring the difference in Doppler phase shift for frequencies varying from 1 to 8 kHz which were given as external stimuli to the middle ear of a small animal model. Malleus is the very first interconnecting region between the TM and cochlea. In our proposed study, we observed that the maximum change in Doppler phase shift was seen for the 4 kHz acoustic stimulus in the malleus, the thick regions, and in the thin regions of the tympanic membrane. In particular, the vibration signals were higher in the malleus in comparison to the tympanic membrane.


2011 ◽  
Vol 125 (5) ◽  
pp. 467-473 ◽  
Author(s):  
T Just ◽  
T Zehlicke ◽  
O Specht ◽  
W Sass ◽  
C Punke ◽  
...  

AbstractObjective:We report an ex vivo and in vivo experimental study of a device designed to measure tympanic membrane movement under normal and pathological conditions, assessed using optical coherence tomography.Materials and methods:We designed two types of flexible, round film patch with integrated strain gauge, to be attached to the tympanic membrane in order to measure tympanic membrane movement. Tympanic membrane attachment was assessed using optical coherence tomography. The devices were tested experimentally using an ex vivo model with varying middle-ear pressure.Results:Optical coherence tomography reliably assessed attachment of the film patch to the tympanic membrane, before and after middle-ear pressure changes. Strain gauge voltage changes were directly proportional to middle-ear pressure recordings, for low pressure changes. Tympanic membrane perforations smaller than 2 mm could be sealed off with the film patch.Conclusion:Attachment of the film patch with integrated strain gauge to the tympanic membrane was not ideal. Nevertheless, the strain gauge was able to precisely detect small pressure changes within the middle ear, in this experimental model.


2021 ◽  
Author(s):  
Christopher Lui ◽  
Wihan Kim ◽  
James Dewey ◽  
Frank MACÍAS-ESCRIVÁ ◽  
Kumara RATNAYAKE ◽  
...  

2018 ◽  
Vol 159 (3) ◽  
pp. 424-438 ◽  
Author(s):  
Hsern Ern Ivan Tan ◽  
Peter Luke Santa Maria ◽  
Philip Wijesinghe ◽  
Brendan Francis Kennedy ◽  
Benjamin James Allardyce ◽  
...  

Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords “tympanic membrane or middle ear,”“optical coherence tomography,” and “imaging.” Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Xiaoya Guo ◽  
David Monoly ◽  
Chun Yang ◽  
Habib Samady ◽  
Jie Zheng ◽  
...  

Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. An innovative modeling approach combining intravascular ultrasound (IVUS) and optical coherence tomography (OCT) is introduced for more accurate patient-specific coronary morphology and stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired from two patients with informed consent obtained. IVUS and OCT images were segmented, co-registered, and merged to form the IVUS+OCT data set, with OCT providing accurate cap thickness. Biplane angiography provided 3D vessel curvature. Due to IVUS resolution (150 μm), original virtual histology (VH) IVUS data often had lipid core exposed to lumen since it sets cap thickness as zero when cap thickness <150 μm. VH-IVUS data were processed with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for modeling use. 3D fluid-structure interaction models based on IVUS+OCT, IVUS50 and IVUS180 data sets were constructed to investigate the impact of OCT cap thickness improvement on stress/strain calculations. Figure 1 is a brief summary of results from 27 slices with cap covering lipid cores from 2 patients. Mean cap thickness (unit: mm) from Patient 1 was 0.353 (OCT), 0.201 (IVUS50), and 0.329 (IVUS180), respectively. Patient 2 mean cap thickness was 0.320 (OCT), 0.224 (IVUS50), and 0.285 (IVUS180). IVUS50 underestimated cap thickness (27 slices) by 34.5%, compared to OCT cap values. IVUS50 overestimated mean cap stress (27 slices) by 45.8%, compared to OCT cap stress (96.4 vs. 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS+OCT model (564.2 vs. 354.5 kPa). Differences between IVUS and IVUS+OCT models for mean cap strain and flow shear stress were modest (cap strain: <12%; FSS <2%). Conclusion: IVUS+OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for plaque research.


Sign in / Sign up

Export Citation Format

Share Document