scholarly journals Extracellular vesicles from human airway basal cells respond to cigarette smoke extract and affect vascular endothelial cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashish Saxena ◽  
Matthew S. Walters ◽  
Jae-Hung Shieh ◽  
Ling-Bo Shen ◽  
Kazunori Gomi ◽  
...  

AbstractThe human airway epithelium lining the bronchial tree contains basal cells that proliferate, differentiate, and communicate with other components of their microenvironment. One method that cells use for intercellular communication involves the secretion of exosomes and other extracellular vesicles (EVs). We isolated exosome-enriched EVs that were produced from an immortalized human airway basal cell line (BCi-NS1.1) and found that their secretion is increased by exposure to cigarette smoke extract, suggesting that this stress stimulates release of EVs which could affect signaling to other cells. We have previously shown that primary human airway basal cells secrete vascular endothelial growth factor A (VEGFA) which can activate MAPK signaling cascades in endothelial cells via VEGF receptor–2 (VEGFR2). Here, we show that exposure of endothelial cells to exosome-enriched airway basal cell EVs promotes the survival of these cells and that this effect also involves VEGFR2 activation and is, at least in part, mediated by VEGFA present in the EVs. These observations demonstrate that EVs are involved in the intercellular signaling between airway basal cells and the endothelium which we previously reported. The downstream signaling pathways involved may be distinct and specific to the EVs, however, as increased phosphorylation of Akt, STAT3, p44/42 MAPK, and p38 MAPK was not seen following exposure of endothelial cells to airway basal cell EVs.

2012 ◽  
Vol 39 (12) ◽  
pp. 10447-10457 ◽  
Author(s):  
Yan Chen ◽  
Hong Luo ◽  
Naixin Kang ◽  
Chaxiang Guan ◽  
Yingjiao Long ◽  
...  

2015 ◽  
Vol 308 (5) ◽  
pp. C378-C384 ◽  
Author(s):  
Min Yang ◽  
Ping Chen ◽  
Hong Peng ◽  
Hongliang Zhang ◽  
Yan Chen ◽  
...  

Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0–10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2′-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome- c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs.


2021 ◽  
Vol 22 (2) ◽  
pp. 798
Author(s):  
Ibukunoluwapo O. Zabroski ◽  
Matthew A. Nugent

The binding of vascular endothelial growth factor A (VEGF) to VEGF receptor-2 (VEGFR-2) stimulates angiogenic signaling. Lipid rafts are cholesterol-dense regions of the plasma membrane that serve as an organizational platform for biomolecules. Although VEGFR2 has been shown to colocalize with lipid rafts to regulate its activation, the effect of lipid rafts on non-activated VEGFR2 has not been explored. Here, we characterized the involvement of lipid rafts in modulating the stability of non-activated VEGFR2 in endothelial cells using raft disrupting agents: methyl-β-cyclodextrin, sphingomyelinase and simvastatin. Disrupting lipid rafts selectively decreased the levels of non-activated VEGFR2 as a result of increased lysosomal degradation. The decreased expression of VEGFR2 translated to reduced VEGF-activation of the extracellular signal-regulated protein kinases (ERK). Overall, our results indicate that lipid rafts stabilize VEGFR2 and its associated signal transduction activities required for angiogenesis. Thus, modulation of lipid rafts may provide a means to regulate the sensitivity of endothelial cells to VEGF stimulation. Indeed, the ability of simvastatin to down regulate VEGFR2 and inhibit VEGF activity suggest a potential mechanism underlying the observation that this drug improves outcomes in the treatment of certain cancers.


Sign in / Sign up

Export Citation Format

Share Document