scholarly journals Differential reprogramming of breast cancer subtypes in 3D cultures and implications for sensitivity to targeted therapy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esmee Koedoot ◽  
Liesanne Wolters ◽  
Marcel Smid ◽  
Peter Stoilov ◽  
Gerhard A. Burger ◽  
...  

AbstractScreening for effective candidate drugs for breast cancer has shifted from two-dimensional (2D) to three-dimensional (3D) cultures. Here we systematically compared the transcriptomes of these different culture conditions by RNAseq of 14 BC cell lines cultured in both 2D and 3D conditions. All 3D BC cell cultures demonstrated increased mitochondrial metabolism and downregulated cell cycle programs. Luminal BC cells in 3D demonstrated overall limited reprogramming. 3D basal B BC cells showed increased expression of extracellular matrix (ECM) interaction genes, which coincides with an invasive phenotype not observed in other BC cells. Genes downregulated in 3D were associated with metastatic disease progression in BC patients, including cyclin dependent kinases and aurora kinases. Furthermore, the overall correlation of the cell line transcriptome to the BC patient transcriptome was increased in 3D cultures for all TNBC cell lines. To define the most optimal culture conditions to study the oncogenic pathway of interest, an open source bioinformatics strategy was established.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4288
Author(s):  
Fernanda Malhão ◽  
Ana Catarina Macedo ◽  
Carla Costa ◽  
Eduardo Rocha ◽  
Alice Abreu Ramos

Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.


Author(s):  
Jinxia Jiang ◽  
Min Feng ◽  
Annemarie Jacob ◽  
Lin Z. Li ◽  
He N. Xu

AbstractTriple-negative breast cancer (TNBC) is a highly diverse group of cancers with limited treatment options, responsible for about 15% of all breast cancers. TNBC cells differ from each other in many ways such as gene expression, metabolic activity, tumorigenicity, and invasiveness. Recently, many research and clinical efforts have focused on metabolically targeted therapy for TNBC. Metabolic characterization of TNBC cell lines can facilitate the assessment of therapeutic effects and assist in metabolic drug development. Herein, we used optical redox imaging (ORI) techniques to characterize TNBC subtypes metabolically. We found that various TNBC cell lines had differing redox statuses (levels of reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and the redox ratio (FAD/(NADH+FAD)). We then metabolically perturbed the cells with mitochondrial inhibitors and an uncoupler and performed ORI accordingly. As expected, we observed that these TNBC cell lines had similar response patterns to the metabolic perturbations. However, they exhibited differing redox plasticity. These results suggest that subtypes of TNBC cells are different metabolically and that ORI can serve as a sensitive technique for the metabolic profiling of TNBC cells.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 448 ◽  
Author(s):  
Fernanda Malhão ◽  
Alice A. Ramos ◽  
Suradet Buttachon ◽  
Tida Dethoup ◽  
Anake Kijjoa ◽  
...  

Preussin, a hydroxyl pyrrolidine derivative isolated from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, displayed anticancer effects in some cancer cell lines, including MCF7. Preussin was investigated for its cytotoxic and antiproliferative effects in breast cancer cell lines (MCF7, SKBR3, and MDA-MB-231), representatives of major breast cancers subtypes, and in a non-tumor cell line (MCF12A). Preussin was first tested in 2D (monolayer), and then in 3D (multicellular aggregates), cultures, using a multi-endpoint approach for cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), resazurin and lactate dehydrogenase (LDH)) and proliferative (5-bromo-2′-deoxyuridine (BrdU)) assays, as well as the analysis of cell morphology by optical/electron microscopy and immunocytochemistry for caspase-3 and ki67. Preussin affected cell viability and proliferation in 2D and 3D cultures in all cell lines tested. The results in the 3D culture showed the same tendency as in the 2D culture, however, cells in the 3D culture were less responsive. The effects were observed at different concentrations of preussin, depending on the cell line and assay method. Morphological study of preussin-exposed cells revealed cell death, which was confirmed by caspase-3 immunostaining. In view of the data, we recommend a multi-endpoint approach, including histological evaluation, in future assays with the tested 3D models. Our data showed cytotoxic and antiproliferative activities of preussin in breast cancer cell lines in 2D and 3D cultures, warranting further studies for its anticancer potential.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 2
Author(s):  
Lee D. Gibbs ◽  
Kelsey Mansheim ◽  
Sayantan Maji ◽  
Rajesh Nandy ◽  
Cheryl M. Lewis ◽  
...  

Increasing evidence suggests that AnxA2 contributes to invasion and metastasis of breast cancer. However, the clinical significance of AnxA2 expression in breast cancer has not been reported. The expression of AnxA2 in cell lines, tumor tissues, and serum samples of breast cancer patients were analyzed by immunoblotting, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We found that AnxA2 was significantly upregulated in tumor tissues and serum samples of breast cancer patients compared with normal controls. The high expression of serum AnxA2 was significantly associated with tumor grades and poor survival of the breast cancer patients. Based on molecular subtypes, AnxA2 expression was significantly elevated in tumor tissues and serum samples of triple-negative breast cancer (TNBC) patients compared with other breast cancer subtypes. Our analyses on breast cancer cell lines demonstrated that secretion of AnxA2 is associated with its tyrosine 23 (Tyr23) phosphorylation in cells. The expression of non-phosphomimetic mutant of AnxA2 in HCC1395 cells inhibits its secretion from cells compared to wild-type AnxA2, which further suggest that Tyr23 phosphorylation is a critical step for AnxA2 secretion from TNBC cells. Our analysis of AnxA2 phosphorylation in clinical samples further confirmed that the phosphorylation of AnxA2 at Tyr23 was high in tumor tissues of TNBC patients compared to matched adjacent non-tumorigenic breast tissues. Furthermore, we observed that the diagnostic value of serum AnxA2 was significantly high in TNBC compared with other breast cancer subtypes. These findings suggest that serum AnxA2 concentration could be a potential diagnostic biomarker for TNBC patients.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


Author(s):  
Guang-Zhen Jin

Abstract Among many factors of controlling stem cell differentiation, the key transcription factor upregulation via physical force is a good strategy on the lineage-specific differentiation of stem cells. The study aimed to compare growth and myogenic potentials between the parental cells (PCs) and the 1-day-old C2C12 spheroid-derived cells (SDCs) in two-dimensional (2D) and three-dimensional (3D) culture conditions through examination of the cell proliferation and the expression of myogenic genes. The data showed that 1-day-old spheroids had more intense expression of MyoD gene with respect to the PCs. The proliferation of the SDCs significantly higher than the PCs in a time dependent manner. The SDCs had also significantly higher myogenic potential than the PCs in 2D and 3D culture conditions. The results suggest that MyoD gene upregulation through cell-cell contacts is the good approach for preparation of seed cells in muscle tissue engineering.


Author(s):  
Fatma Kubra Ata ◽  
Serap Yalcin

Background: Chemotherapeutics have been commonly used in cancer treatment. Objective: In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB-231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment. Methods: The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay. Results: Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment. Conclusion: More resistance to chemotherapeutics and altered gene expression profile was shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR in the 3D spheroid forms.


Sign in / Sign up

Export Citation Format

Share Document