scholarly journals Path integral implementation of relational quantum mechanics

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianhao M. Yang

AbstractRelational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In a recent paper (Yang in Sci Rep 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born’s Rule, Schrödinger Equations, and measurement theory. This paper further extends the reformulation effort in three aspects. First, it gives a clearer explanation of the key concepts behind the framework to calculate measurement probability. Second, we provide a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also allows us to elegantly explain the double slit experiment, to describe the interaction history between the measured system and a series of measuring systems, and to calculate entanglement entropy based on path integral and influence functional. In return, the implementation brings back new insight to path integral itself by completing the explanation on why measurement probability can be calculated as modulus square of probability amplitude. Lastly, we clarify the connection between our reformulation and the quantum reference frame theory. A complete relational formulation of quantum mechanics needs to combine the present works with the quantum reference frame theory.

2021 ◽  
Author(s):  
Jianhao M. Yang

Abstract Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born's Rule, Schr\"{o}dinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems. More interestingly, it allows us to develop a method to calculate entanglement entropy based on path integral and influence functional. Criteria of entanglement is proposed based on the properties of influence functional, which may be used to determine entanglement due to interaction between a quantum system and a classical field.


1997 ◽  
Vol 12 (20) ◽  
pp. 1455-1463 ◽  
Author(s):  
G. S. Djordjević ◽  
B. Dragovich

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude [Formula: see text] for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 12
Author(s):  
William Stuckey ◽  
Timothy McDevitt ◽  
Michael Silberstein

Quantum information theorists have created axiomatic reconstructions of quantum mechanics (QM) that are very successful at identifying precisely what distinguishes quantum probability theory from classical and more general probability theories in terms of information-theoretic principles. Herein, we show how one such principle, Information Invariance and Continuity, at the foundation of those axiomatic reconstructions, maps to “no preferred reference frame” (NPRF, aka “the relativity principle”) as it pertains to the invariant measurement of Planck’s constant h for Stern-Gerlach (SG) spin measurements. This is in exact analogy to the relativity principle as it pertains to the invariant measurement of the speed of light c at the foundation of special relativity (SR). Essentially, quantum information theorists have extended Einstein’s use of NPRF from the boost invariance of measurements of c to include the SO(3) invariance of measurements of h between different reference frames of mutually complementary spin measurements via the principle of Information Invariance and Continuity. Consequently, the “mystery” of the Bell states is understood to result from conservation per Information Invariance and Continuity between different reference frames of mutually complementary qubit measurements, and this maps to conservation per NPRF in spacetime. If one falsely conflates the relativity principle with the classical theory of SR, then it may seem impossible that the relativity principle resides at the foundation of non-relativisitic QM. In fact, there is nothing inherently classical or quantum about NPRF. Thus, the axiomatic reconstructions of QM have succeeded in producing a principle account of QM that reveals as much about Nature as the postulates of SR.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrea Oldofredi

AbstractThe present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this regard, defining what kind of concrete physical objects populate the world according to RQM, I argue that this theoretical framework can be made compatible with (i) a property-oriented ontology, in which the notion of object can be easily defined, and (ii) moderate structural realism, a philosophical position where relations and relata are both fundamental. Finally, I conclude that under this reading relational quantum mechanics should be included among the full-fledged realist interpretations of quantum theory.


2008 ◽  
Vol 284 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Dana S. Fine ◽  
Stephen F. Sawin

1979 ◽  
Vol 24 (3) ◽  
pp. 75-80
Author(s):  
M. Ciafaloni

Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.


Sign in / Sign up

Export Citation Format

Share Document